<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>healthy patient</td>
</tr>
</tbody>
</table>
| Class II| mild systemic disease
| | no functional limitation |
| Class III| severe systemic disease
| | definite functional limitation |
| Class IV| severe systemic disease
| | disease is a constant threat to life |
| Class V | moribund patient
| | not expected to survive 24 hours, with or without surgery |

1. modified by Dripps et al. 1961

2. whether or not the disease is that for which the patient is presenting
DIABETES MELLITUS

1. diabetes actually represents two distinct disease entities,
 i. type I IDDM juvenile onset
 ii. type II NIDDM mature onset
 → different perioperative management

2. different regimens permit almost any degree of blood glucose control,
 i. frequent measurement of BSL is recommended
 ii. the tighter the desired control, the more frequently BSL must be monitored

3. there is debate as to how "tight" perioperative control should be,
 i. chronic tight control of type I → ↓ complications
 ii. some benefit has been shown for - pregnancy
 - CABG
 - focal/global CNS ischaemia
 iii. the extent of benefit in relation to risks for other cases is uncertain

4. excepting these cases, diabetes per se may not be as important to outcome as end-organ complications
 i. cardiovascular dysfunction - atherosclerosis (CAD / PVD)
 - hypertension
 - cardiomyopathy
 ii. renal dysfunction - nephrosclerosis
 iii. joint-collagen tissue abnormalities - joint immobility, "stiff-joint syndrome"
 - impaired tissue healing
 iv. immune dysfunction - nosocomial infections
 v. neuropathies - peripheral
 - autonomic

NB: the combined presence of diabetes, hypertension & renal dysfunction carries a significantly worse prognosis

■ Diagnosis WHO

1. fasting venous plasma glucose ≥ 7.8 mmol/l (NB: plasma 15% > whole blood)
 • on at least 2 occasions

2. glucose tolerance test
 • following ingestion of 75g of glucose
 • 2 hr venous plasma glucose ≥ 11.1 mmol/l
 • at least one other test value ≥ 11.1 mmol/l
 • ie. a minimum of 2 values are required during the test interval
 • if the 2 hr value is between 7.8 & 11.0 mmol/l,
 and one other value during the 2 hr test is ≥ 11.1 mmol/l,
 then the diagnosis of impaired glucose tolerance is made
Pathophysiology

- **Insulin**
 - synthesised from proinsulin in β-cells of pancreas ~ 200 U stored
 - steady-state basal release during fasting limits ketosis & catabolism
 - only ~ 7% of plasma insulin activity is suppressed by anti-insulin Ab's
 - the remaining 93% constitutes *nonsuppressible insulin-like activity*, NSILA
 - a. somatomedins ~ 5%
 - insulin-like growth factors - IGF I & II
 - b. nonsuppressible insulin-like protein - NSILP

Factors Influencing Insulin Release

<table>
<thead>
<tr>
<th>Stimulation</th>
<th>Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>glucose & fructose</td>
<td>somatostatin</td>
</tr>
<tr>
<td>amino-acids</td>
<td>insulin</td>
</tr>
<tr>
<td>leucine, arginine</td>
<td>drugs</td>
</tr>
<tr>
<td>drugs</td>
<td>drugs</td>
</tr>
<tr>
<td>theophylline (PDE inhibitors)</td>
<td>diazoxide</td>
</tr>
<tr>
<td>sulphonylureas</td>
<td>thiazide diuretics</td>
</tr>
<tr>
<td>acetylcarnine</td>
<td>phenytoin</td>
</tr>
<tr>
<td>β-agonists ↑ glucose & K⁺ uptake</td>
<td>2-deoxyglucose</td>
</tr>
<tr>
<td>GIT hormones</td>
<td>α₁-agonists</td>
</tr>
<tr>
<td>gastrin, secretin</td>
<td></td>
</tr>
<tr>
<td>cholecystokinin-pancreozymin</td>
<td></td>
</tr>
<tr>
<td>enteroglucagon (GIP)</td>
<td></td>
</tr>
<tr>
<td>glucagon</td>
<td></td>
</tr>
</tbody>
</table>
Type I Diabetes

- **juvenile onset** - usually but not essential
- an *autoimmune* disease with a *MZ concordance ~ 40-50%*
 - auto-Ab's to *glucose transporter* of β-cells
- a relative or absolute deficiency of insulin
- a tendency to both - *ketotic hyperglycaemic coma & *
 - *hyperglycaemic, hyperosmolar, non-ketotic coma*
 - insulin levels are low or immeasurable
 - increase insulin requirement in postmidnight hours → "dawn phenomenon"
 - results in early morning hypoglycaemia due to nocturnal surges in GH secretion

Type II Diabetes

- usually an adult onset & frequently associated with *obesity*
 - also pregnancy, drugs and other endocrine abnormalities
- MZ *concordance ~ 100%*
- a peripheral resistance to insulin
- no tendency toward ketoacidosis or hyperosmolar, non-ketotic coma
 - management varies from diet, to oral hypoglycaemics ± insulin
 - *sulphonylureas* act by,
 1. increasing release of insulin from the pancreas
 2. improving peripheral utilisation of glucose
 - ? increased receptor numbers, or increased binding
 - newer agents, *glyburide & glipizide* have a longer duration of hypoglycaemic effect (~ 24 hrs) and fewer drug interactions
 - *chlorpropamide* has the longest half-life & these agents may produce hypoglycaemia for up to 50 hrs post-administration
 - the *biguanides* act by,
 1. increasing glucose utilisation through anaerobic metabolism
 2. decreasing gluconeogenesis
 3. decreasing intestinal absorption of glucose
Complications

1. **acute**
 i. hypoglycaemia ± coma
 ii. ketoacidosis ± coma
 iii. hyperglycaemic, hyperosmolar, non-ketotic coma

b. **chronic**
 i. **cardiovascular**
 • accelerated atherosclerosis (CAD / PVD)
 • microangiopathy - retinopathy, neuropathy, etc.
 • hypertension
 • cardiomyopathy - diastolic pump dysfunction
 - infiltrative decrease in compliance
 ii. **renal**
 • mild renal impairment to ESRF 2° progressive GN
 • higher rate of renal transplant rejection
 iii. **joint-collagen tissue** abnormalities
 • stiff joint syndrome - TMJ and atlanto-axial immobility
 • poor wound healing - decreased tensile strength
 - rate of tissue healing
 iv. **immune deficiency**
 • nosocomial infections - wound
 - respiratory tract
 v. **neuropathic**
 • peripheral neuropathy - trophic changes, ulcers, infections
 • autonomic neuropathy - CVS instability
 - silent myocardial ischaemia
 - asymptomatic hypoglycaemia
 vi. **psychological**
 • chronic disease state & recurrent hospitalisation
Degree of Control

NB: the evidence that tight control of the BSL reduces the rate of progression, or that poor control accelerates the progression, is suggestive but not definitive

- high concentrations of glucose promote non-enzymatic glycosylation reactions, which may be in part responsible for,
 1. ↓’d tissue elastance - stiff joint syndrome
 - poor wound healing
 - decreased myocardial compliance
 2. ↑ macroglobulin synthesis - ↑ blood viscosity
 3. ↑ ICF volume
 - production of nondiffusible species (sorbitol etc) with intracellular swelling
 - newer therapies (aldose-reductase inhibitors) aim to reduce formation

- insulin may be directly toxic to small blood vessels and retinopathy initially worsens with tight control
 - chronic therapy does reduce the leakiness of the glomerular capillaries to albumin, and the retinal capillaries to fluorescein dyes
 - problems secondary to high levels of peripheral insulin are absent with administration into the portal system

- tight control does improve wound tensile strength & decrease infections in animal models
 - hyperglycaemia, neuropathy, atherosclerosis & microangiopathy may contribute to wound failure
 - insulin is necessary in the early stages of the inflammatory response, but appears to have no effect on collagen formation after the first 10 days
 - epithelial wounds do not require leukocyte infiltration and collagen formation for healing and are thus not impaired in the diabetic patient

- infections account for ~ 2/3 of postoperative complications & ~ 20% of perioperative deaths,
 a. altered leukocyte function
 - ↓ chemotaxis & ↓ phagocytic activity of granulocytes
 - ↓ intracellular killing of pneumococci & staphlococci
 b. function is returned to near-normal levels with tight control BSL < 12.5 mmol/l

- Cruse et al. (Arch.Surg 1973) in a review of 23,649 surgical patients,
 a. diabetic wound infection ~ 10.7% cf. 1.8% in non-diabetics
 b. when age is accounted for, the difference in incidence is not statistically significant
430 consecutive patients from out-of-hospital arrest, mean BSL levels at presentation,
a. patients who never wakened ~ 341 ± 13 mg/dl (~ 19 mmol/l)
b. patients who wakened
 i. with CNS deficit ~ 286 ± 15 mg/dl (~ 16 mmol/l)
 ii. without CNS intact ~ 251 ± 7 mg/dl (~ 14 mmol/l)
c. consistent with hyperglycaemia → worse neurological outcome
d. supported by studies of global ischaemia, not those of focal ischaemia

NB: 1. ? does hyperglycaemia worsen neurological outcome, or is it simply a marker of more profound physiological derangement & prolonged resuscitation
 2. current recommendation for diabetics undergoing procedures with potentially decreased CBF is to maintain BSL < 14 mmol/l (250 mg/dl)

in a 1980 study of 340 diabetics vs. 2522 nondiabetics undergoing CABG,
1. moderate increase in operative mortality ~ 1.8% vs. 0.6%
2. requirement for inotropic support & IABP ~ 5x ↑

reasons for these differences include,
1. more extensive and diffuse CAD
2. higher incidence of,
 i. preoperative hypertension
 ii. cardiomegaly
 iii. diffuse hypokinesis
 iv. previous MI
3. IDDM patients with CAD have stiffer LV’s with elevated LVEDP
4. autonomic dysfunction → ↓ preload regulation
5. CPB, hypothermia and stress reactions decrease the responsiveness to insulin
 • results in marked hyperglycaemia, even without glucose in the IVT
 • washed cells have been advocated as ACD significantly increases BSL
 • insulin administration has little effect until rewarming
 • lactate containing solutions are gluconeogenic & poorly absorbed
6. IDDM with poor LV function may have operative mortality ~ 10-15%
Emergency Surgery & Ketoacidosis

- the likelihood of intraoperative cardiac arrhythmias, CCF or hypotension are markedly reduced if the metabolic decompensation can be at least partially reversed
- however, delaying surgery where the underlying condition will continue to exacerbate ketoacidosis is futile

a. resuscitate - ABC

b. fluid / volume resuscitation
 i. colloid ~ 10-20 ml/kg prn
 ii. crystalloid ~ 15 ml/kg/hr → 5 ml/kg/hr over 4-5 hours
 - 0.9% saline + KCl 20 mmol/l
 - 0.45% saline - if Na⁺ > 150 mmol/l
 iii. dextrose - when BSL < 20 mmol/l
 * total body deficit

c. insulin ~ 10-20 U IV ~ 0.25 U/kg
 + infusion U/hr ~ BSL (mmol/l)/8

d. potassium ~ 20 mmol/hr ~ 0.3 mmol/kg/hr
 - 30-50 mmol/hr if HCO₃⁻ used
 ± HCO₃⁻, H₂PO₄⁻ and Mg²⁺
 i. NaHCO₃ - consider if persistent pH < 7.0
 - give 1 mmol/kg in 500 ml (~ 1.4%) over 1 hr
 - no evidence for benefit
 ii. KH₂PO₄ - consider if [plasma] < 0.7 mmol/l
 - give as K⁺ salt 7-10 mmol/hr
 iii. MgSO₄ - no need unless tachyarrhythmia

e. treat underlying cause

- the actual amount of insulin given is less important than regular monitoring of the BSL, H⁺ & K⁺
- the number of insulin binding sites is limited, thus the rate of decline of plasma glucose is limited to a fairly constant ~ 4-5.5 mmol/l/hr
- the anion gap component of the acidaemia may be due to any, or a combination of,
 1. ketoacids
 2. lactic acid
 3. organic acids due to renal insufficiency

- hyperchloroaemic, normal anion gap acidosis may result from DKA treated with N.saline only
- bicarbonate therapy is controversial,
 1. respiration and myocardial function are depressed at pH < 7.0
 2. rapid correction with HCO₃⁻ may result in,
 i. paradoxical CSF & ICF acidosis due to diffusion of CO₂
 ii. altered CNS oxygenation & decreased CBF
 iii. production of unfavourable osmotic gradients
Regimens for Control

■ Classical Non-Tight Control

NB: aim: to prevent hypoglycaemia, ketosis & hyperosmolar states

1. fast from 2400 hrs the night before surgery,
a glass of orange juice being beside the bed for emergency use
2. commence IVT at 0600 with D_5W at a rate of **125 ml/70kg/hr**
3. administer $\frac{1}{2}$ the usual morning insulin dose s.c.
4. continue this IVT throughout the operative period
5. monitor BSL in the recovery and treat with a *sliding scale q4h*

<table>
<thead>
<tr>
<th>BSL: mmol/l</th>
<th>Insulin: Units s.c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10.0</td>
<td>0^U</td>
</tr>
<tr>
<td>10.1 - 15.0</td>
<td>4^U</td>
</tr>
<tr>
<td>15.1 - 20.0</td>
<td>8^U</td>
</tr>
<tr>
<td>> 20.0</td>
<td>12^U</td>
</tr>
</tbody>
</table>

■ Tight Control

NB: aim: to achieve a BSL ~ 4.5-11.0 mmol/l, possibly improving wound healing

1. determine preprandial BSL the preceeding evening
2. commence IVT with D_5W at a rate of **50 ml/70kg/hr**
3. commence an insulin infusion = $50^U/50$ ml N.Saline,
use a metered pump set the infusion to run at,

$$\text{Insulin}(U/Hr) = \frac{\text{plasma glucose} \ (\text{mmol/l})}{8.0}$$

4. repeat BSL every 4 hours & adjust infusion to a BSL ~ 5.5-11 mmol/l
 - denominator should be ~ 5.0 mmol/l in patients taking corticosteroids
 - 100 mg/dl ~ 5.55 mmol/l \rightarrow denominator ~ 150 mg/dl
5. determine the BSL preinduction and repeat 2/24'ly for the next 24 hours

NB: alternatively the feedback mechanism could be performed by a feedback mechanical pancreas
ADRENAL DISORDERS

- **Adrenal Cortex**

 1. **glucocorticoids**
 - cortisol integral in regulation of CHO, protein, lipid & nucleic acid metabolism
 - stereospecific intracellular cytoplasmic receptor, stimulating nuclear transcription of specific mRNA and subsequent protein synthesis
 - plasma $t_{1/2} <<$ clinical effect, \therefore dose according to later
 - majority bound to cortisol binding globulin, transcortin, which is altered in disease states (\uparrow pregnancy, OCP / \downarrow liver disease, nephrotic syndrome)
 - metabolism primarily in the liver to 17-OH-steroid, also filtered unchanged
 - urinary cortisol is most accurate reflection of plasma activity, as represents the filtered free fraction
 - secretion under control of pituitary ACTH/CRF, with **diurnal rhythm**

 2. **mineralocorticoids** - aldosterone, secreted by zona glomerulosa

 3. **androgens** - androstenedione, dehydroepiandrosterone

- **Adrenal Medulla**

 NB: sympathomimetic amines

Glucocorticoid Excess

- **Aetiology**

 1. **iatrogenic steroid administration** - most common

 2. pituitary adenoma ~ 80% (of remainder)
 - Cushing's disease
 - bilateral adrenal hyperplasia

 3. ectopic ACTH ~ 15%
 - biochemical effects, **not** clinically Cushingoid

 4. adrenal adenoma ~ 4%

 5. adrenal carcinoma ~ 1%
Clinical Features

1. symptoms & signs
 i. **hypertension** - ↑ renin substrate & ↑ vascular reactivity
 - ↑ blood volume 2° fluid retention
 ii. truncal obesity, bruising, striae
 iii. poor wound healing
 iv. plethoric "moon" face, hirsutism
 v. weakness
 vi. osteoporosis

2. electrolyte abnormalities
 i. high Na\(^+\), HCO\(_3^\) & glucose
 ii. low K\(^+\) & Ca\(^{++}\)
 iii. **metabolic alkalosis** - normal anion gap

3. secondary endocrine effects
 i. insulin resistance
 ii. antagonism of GH effects
 iii. 2° **hyperparathyroidism** → ↓ Ca\(^{++}\)
 iv. ACTH excess & increased pigmentation
 v. androgen excess

Laboratory Investigations & Diagnosis

a. high plasma cortisol and loss of *diurnal variation*
 • normal range ~ 140-690 nmol/l
 • trough level ~ 2400 hrs
 • peak level ~ 0600 hrs

b. increased urinary 17-(OH)-steroids

c. *loss of suppression* with dexamethasone 2mg

d. ACTH level
 i. normal / high → pituitary
 ii. low → adrenal, ectopic cortisol administration
 iii. very high → ectopic ACTH
Management

1. resection of pituitary microadenoma
 - usually trans-sphenoidal approach
 - Roizen states anecdotally higher CVP and greater blood-loss, cf. other pituitary microadenoma
2. unilateral / bilateral adrenalectomy
 - preoperative suppression of hypothalamic/hypophyseal axis
 → glucocorticoid supplementation postoperatively
 → mineralocorticoid supplementation after several days
 - ~ 10% will have an undiagnosed pituitary adenoma,
 i. rapid enlargement following adrenalectomy
 ii. ↑ pigmentation due to ACTH/MSH secretion
 iii. field defects / hypopituitarism from mass effect
3. radiotherapy
4. medical therapy
 - tumour (pituitary, adrenal, ectopic) not amenable to surgical resection
 - following unilateral adrenalectomy for adenoma/carcinoma, the other gland frequently enlarges & hypersecretes
 i. metyrapone, mitotane - inhibition of steroid synthesis
 ii. cyproheptadine - hypothalamic serotonin (CRH) antagonist
 iii. spironolactone - aldosterone antagonist
 - the aim of therapy is complete adrenal suppression,
 ∴ may require perioperative steroid replacement

Mineralocorticoid Excess

Aetiology

1. concomitant with glucocorticoid excess
2. primary hyperaldosteronism - low renin substrate
 i. Conn's syndrome - benign adenoma of the zona glomerulosa
 ii. bilateral adrenal hyperplasia ~ 25-40%
3. secondary hyperaldosteronism - high renin substrate
 i. CCF
 ii. cirrhosis
 iii. nephrotic syndrome
 iv. pre-renal failure
 v. renal artery stenosis
 vi. bronchial carcinoma
 vii. Bartter's syndrome - hyper-reninaemic hyperaldosteronism
Clinical Features Conn's Syndrome

a. hypertension ~ 0.5-1.0% of hypertensive patients
b. high incidence of ischaemic heart disease
c. hypernatraemia / hypokalaemia
d. metabolic alkalosis
e. polyuria ~ hypokalaemic nephrogenic DI
f. low plasma renin activity - ie., not 2° hyperaldosteronism

Management

1. spironolactone - aldosterone antagonist
 - slow onset of effects, usually takes 1-2 weeks
 - aim to normalise volume status & hypokalaemic metabolic alkalosis
2. surgical resection

Glucocorticoid Deficiency

Aetiology

a. primary adrenal insufficiency
i. autoimmune - Addison's disease
ii. surgical removal - breast carcinoma
iii. infection - TB, septicaemia, viral (especially in AIDS)
iv. metastatic carcinoma
v. haemorrhagic/coagulopathic adrenal necrosis
 - Waterhouse-Friderichsen syndrome
 - predominantly children - Pseudomonas, meningococcaemia
 - adults during pregnancy, or with anticoagulant therapy during stress

b. secondary adrenal insufficiency
i. hypopituitary syndromes
ii. pituitary supression * exogenous steroids (most common cause)
 - steroid secreting tumours

c. interference with hormone synthesis
i. congenital hypoplasia - C_{21}, C_{11}, C_{17}
 - C_{21}-hydroxylase - adrenal virulisation ± hypoaldosteronism
 - C_{11}-hydroxylase - hypertensive variant of adrenal virulisation
ii. enzyme inhibitors - metyrapone, mitotane, aminogluthethamide
 - ketoconazole
iii. cytotoxics
Precipitating Factors

- surgery, trauma
- cessation of steroid therapy
- sepsis, coagulopathy
- acute illness

Clinical Features

- weakness, fatigue ~ 100%
- excess pigmentation ~ 90%
- hypotension ± hypovolaemia ~ 90%
- mild hyponatraemia, hypoosmolality ~ 90%
- hyperkalaemia (Na⁺:K⁺ ratio < 25:1) ~ 70%
- vomiting, diarrhoea, abdominal pain ~ 60%
- hypoglycaemia
- mildly elevated urea
- mild anion gap acidosis - renal impairment, hypovolaemia, lactate, etc.
- short Synacthen test
 - no response - primary adrenal failure
 - normal response - hypopituitarm

Treatment

- O₂ and ventilatory support
- IV fluids
 - colloids to restore blood volume
 - saline to replace Na⁺ deficit
 - glucose
- hydrocortisone - 200 mg stat - 100 mg q6h
- inotropes / vaspressors prn - resistant in absence of cortisol replacement
- treatment of primary cause, or initiating factor
Hypoaldosteronism

NB: associated with *low renin* activity and *normal cortisol* secretion, failure of aldosterone response to fluid/sodium restriction

i. hereditary defect - rare
ii. post-surgical for unilateral adenoma
iii. prolonged *heparin* / heparinoid administration
iv. pretectal nervous system disease
v. severe postural hypotension
vi. long-standing diabetes
vii. chronic renal failure
viii. renal insufficiency & therapy with PG inhibitors (NSAID's)

- **Clinical Features**

 1. hyperkalaemic acidosis
 2. myocardial conduction defects
 3. hyponatraemia / hypovolaemia
 4. **hypertension** - present in many, despite volume contraction
 - requires monitoring during mineralocorticoid replacement

- **Patients on Steroid Therapy**

 1. perioperative stress relates to the degree of trauma and the depth & type of anaesthesia
 2. deep GA, or high RA delays the normal cortisol surge to the postoperative period
 3. patients with suppressed HPA axes rarely suffer CVS complications if they *do not* receive steroid replacement perioperatively
 4. acute adrenal insufficiency occurs very *rarely*, but may be *life-threatening*
 • CVS collapse 2° catecholamine "insufficiency", due to permissive cortisol effects
 5. there appears to be a *minor risk* in perioperative steroid administration
 i. aggravation of hypertension, sodium & H₂O retention
 ii. delayed wound healing and increased infection rate
 iii. stress ulceration of the gastric mucosa
 iv. psychiatric disturbances

NB: give supplementation to *all* patients receiving steroids in the preceeding *12 months*
THYROID DYSFUNCTION

Hyperthyroidism

■ Causes

1. disorders associated with thyroid hyperfunction
 i. excess production of TSH - rarely with pituitary adenoma
 ii. extrinsic → abnormal thyroid stimulator
 • Graves' disease - most common, diffuse multinodular goitre
 - LATS, LATS-p, TSI, and TBII
 • trophoblastic tumour - choriocarcinoma
 iii. intrinsic → thyroid autonomy
 • hyperfunctioning thyroid adenoma
 • toxic multinodular goitre

2. disorders not associated with thyroid hyperfunction
 i. disorders of hormone storage
 • subacute thyroiditis - with or without neck pain
 • chronic thyroiditis with transient thyrotoxicosis (CT/TT)
 ii. extrathroidal source of hormone
 • thyrotoxicosis factitia - exogenous ingestion
 • ectopic thyroid tissue - struma ovarii
 - functioning follicular carcinoma

3. pregnancy ~ 5%, up to 3-6 months post-partum

■ Major Clinical Manifestations

a. weight loss
b. diarrhoea ± fluid & electrolyte disturbances if severe
c. nervousness, agitation
d. warm moist skin, heat intolerance
e. muscular weakness - especially proximal, apathetic form, elderly
f. menstrual abnormalities
g. cardiac dysrhythmias
h. cardiac / papillary muscle dysfunction ± mitral valve prolapse
i. congestive heart failure

• when the thyroid is functioning abnormally the cardiovascular system is the one most stressed
• hyperthyroidism may also take an apathetic form, most commonly seen in the elderly, where CVS effects predominate
• although β-blockade will control the rapid HR, this carries the risk of precipitating CCF
however, decreasing the ventricular rate will usually improve LV filling and function
ocasionally patients require emergency surgery with uncontrolled hyperthyroidism, and control of the rate with propanolol (or esmolol) is unavoidable
its use in this situation should be cautious, with the aid of PCWP measurement
the aim, however, is not to anaesthetise anyone prior to control of their hyperthyroidism, ie. "life-threatening" cases only
control may be achieved by the use of "anti-thyroid" medications, such as propylthiouracil or methimazole, both of which decrease the synthesis of thyroxine
PTU also decreases the peripheral conversion of T_4 to T_3
there is now a trend toward preparation with β-blocker and iodides alone
the later approach is quicker, 7-14 days, c.f. 2-6 weeks for the former
although both methods treat the symptoms and achieve devascularisation of the gland, the later does not treat the abnormalities of LV function
regardless of the approach, anti-thyroid medication should be administered chronically and through the morning of surgery
prior to the euthyroid state being achieved, control during surgery may be achieved with propranolol ~ 0.2 to 10.0 mg IV, providing CCF does not supervene
fluid and electrolyte balance should also be restored
treatment with β-blockers does not invariably prevent the onset of thyroid storm
with regard to anaesthetic agents, no study has been performed which can attribute any increased incidence of adverse effects due to an anaesthetic agent, or technique
some recommend anticholinergic medications be avoided, due to the inhibition of sweating and tachycardia
atropine has been used as a test for the adequacy of antithyroid treatment
patients possessing large goitres and obstructed airways can be handled in the same way as for any patient with upper airway obstruction,
premedication should avoid excessive sedation
an airway should be established, often with the patient awake
a firm armoured tube should be used
the patient should not be paralyzed prior to intubation
preoperative CT scanning may be desirable to determine the extent of compression and retrosternal extension
the most important perioperative complications of thyroid surgery include,
thyroid storm
recurrent laryngeal nerve injury
hypocalcaemic tetany
bilateral recurrent laryngeal nerve injury results in stridor and airway obstruction due to unopposed adduction of the vocal cords and closure of the glottic aperture
immediate intubation is required, usually followed by tracheostomy
unilateral recurrent laryngeal nerve injury often goes unnoticed due to compensation by the patent side
Thyroid Storm

1. abrupt onset → mortality ~ 10-20\% - without treatment
2. F > M - usually unrecognised or poorly controlled Grave's disease
3. ↑ T₃ \& fT₄ - but levels do not correlate with the severity of the state
 - results more from loss of end-organ ability to modulate response
4. precipitating factors ~ 50\%
 i. intercurrent illness - especially infection
 ii. trauma
 iii. operative procedures
 iv. uncontrolled diabetes mellitus
 v. labour and pre-eclampsia/eclampsia
5. associated with surgery - excessive palpation of the gland
 - incomplete preparation
 - inadequate doses of β-blockers preoperatively
6. uncommon factors - radio-iodine in unprepared patients
 - iodide drugs, amiodarone, haloperidol
 - large doses of thyroid hormones

NB: now uncommon in association with thyroid surgery

Clinical Presentation

1. fever ≥ 41°C
 - usually absent in uncomplicated thyrotoxicosis
 - usually moist warm skin
2. CVS - dyspnoea and fatigue
 - sinus tachycardia (may be > 160 bpm)
 - AF, ventricular arrhythmias
 - congestive failure, cardiomegaly ± ECG changes of LVH
 - mitral valve prolapse (both treated and active disease)
3. CNS / MSS - tremor, increasing restlessness, nervousness and insomnia
 - progressing to delerium, then coma and death
 - hyperactive tendon reflexes, hyperkinesis
 - muscle weakness, especially in apathetic form
 - syndrome ≡ UMN lesion with asymmetrical reflexes
 - rhabdomyolysis
4. GIT - nausea, vomiting and diarrhoea
 - poor oral bioavailability of drugs, rapid intestinal transit
 - severe abdominal pain, suggesting intra-abdominal pathology
 - jaundice is a poor prognostic sign
5. neck - goitre & thyroid bruit if Grave's disease
 - dysphagia, aspiration risk, difficult intubation

6. biochemistry ~ 15% have hypercalcaemia, but rarely an emergent problem
 * hypokalaemia & hypomagnesaemia may be severe, especially in apathetic form

7. FBE - leukocytosis common

Management

1. **ABC** - supportive measures

2. **β-adrenergic blockade**
 - antagonises the effects of thyroid hormones and decreases the sensitivity to circulating catecholamines
 - inhibits the peripheral conversion of T₄ \(\rightarrow \) T₃
 - tachycardia, fever, hyperkinesia & tremor respond promptly
 - improves proximal myopathy, periodic thyrotoxic paralysis, bulbar palsy and thyrotoxic hypercalcaemia
 - **propranolol ~ 0.5 mg** increments IV with CVS monitoring (up to 10 mg)
 - oral doses 20-120 mg q6h but may need to ↑ dose due to ↑↑ clearance
 - **β₁-selective antagonists do not** inhibit the conversion of T₄ \(\rightarrow \) T₃ as effectively, but may be preferred in the presence of CCF or airways disease
 - **reserpine** has been largely superseeded, but may be of benefit in propranolol resistant hyperthyroidism

3. **steroids**
 - usually administered as a relative deficiency may be present
 - inhibit the peripheral conversion of T₄ \(\rightarrow \) T₃
 - hydrocortisone ~ 100 mg IV q6h

4. **thioamides**
 - no parenteral preparation is available
 i. **prophylthiouracil**
 - rapid onset of action
 - blocks the iodination of tyrosine and the peripheral conversion of T₄ \(\rightarrow \) T₃
 - GIT absorption is impaired and unreliable during a crisis
 - administered orally or via NG tube
 - loading dose ~ 1g, followed by 200-300 mg q4-6h
 ii. **methimazole**
 - less rapidly absorbed but longer acting
 - **does not** inhibit the peripheral conversion of T₄ \(\rightarrow \) T₃
 - doses are ~ 1/10th those for propylthiouracil
 iii. **carbimazole**
 - metabolised to methimazole, relative potency ~ 0.6:1
 - transient leukopenia is common but agranulocytosis rare
5. **iodine**
 - large doses inhibit the synthesis and release of thyroid hormones
 - → *Wolff-Chaikoff effect*
 - administration delayed ≥ 1 hour after thioamides ? why
 - Lugol's iodine, saturated solution potassium iodide (SSKI), potassium iodide, or sodium iodide
 - NaI ~ 1g IV q12h or continuous infusion, or equivalent doses of other agents

6. **lithium**
 - same effects as iodine and may be used in allergic patients
 - doses 500-1500 mg daily
 - requires monitoring plasma levels ~ 0.7-1.4 mmol/l

7. **digoxin**
 - following the correction of *hypokalaemia* if AF is present
 - requires larger doses due to ↑ clearance & ↓ efficacy
 - usually ineffective alone ± β-blockers, verapamil, amiodarone, reserpine
 - *amiodarone* also inhibits peripheral de-iodination of T_4

8. other measures
 i. IVT, electrolytes, glucose
 ii. treat fever, but *not aspirin*, as this displaces $T_{3,4}$
 iii. vitamins, especially thiamine
 iv. *cholestyramine* binds thyroxine in the GIT
 v. *plasma exchange* in refractory cases, following 24-48 hrs aggressive Rx
 vi. *dantrolene* has been used with symptomatic improvement
Hypothyroidism

NB: common, ranging from 3-6% of the population, usually *subclinical* → normal T₄/T₃ but ↑ TSH

- **Aetiology**

1. **thyroidal** ≥ 95% of cases
 i. **thyroprivic**
 • congenital developmental defects
 • postablative - surgery & radio-iodine for Graves' disease
 most common cause
 • post-radiation - lymphoma, SCC
 • **primary idiopathic** - circulating antithyroid Ab's
 ± multiple endocrine neoplasia syndrome (MEN I, pituitary adenoma)
 ± IDDM, SLE, RA, Sjögren's synd., pernicious anaemia, chronic hepatitis
 ii. **goitrous**
 • congenital biosynthetic defects
 • maternally transmitted - iodides, antithyroid drugs
 • chronic thyroiditis - Hashimoto's
 • iodine deficiency
 • drug induced - aminosalicylate, lithium, phenylbutazone
 - amiodarone, iodides

2. **suprathyroidal** < 5% of total cases
 i. pituitary - Sheehan's syndrome
 ii. hypothalamic

3. **self-limiting**
 i. following suppressive therapy with antithyroid drugs
 ii. following surgical excision of functioning adenoma
 iii. thyrotoxicosis of pregnancy
 iv. subacute thyroiditis
 v. chronic thyroiditis & transient hypothyroidism

- **Common Causes of Goitre**

i. endemic, nontoxic goitre - iodine deficiency, most common worldwide
ii. Graves' disease
iii. toxic multinodular goitre
iv. adenoma, carcinoma
v. Hashimoto's thyroiditis
vi. chronic thyroiditis
Clinical Features

a. ↓ BMR ~ 40-50%

b. CNS
- slow mentation, lethargy
- sensitivity to sedatives / opioids
- tendency to hypothermia, cold intolerance
* CMRO\textsubscript{2} not decreased, except with hypothermia

c. CVS
i. ↓ LV function ~ 50-60% decrease in contractility
 ~ 40% decrease in CO
 ~ 60% pericardial effusion
 - cardiomegaly and increased CAD
ii. ↓ blood volume ~ 10-25%
iii. baroreceptor dysfunction - ↓ responses to ∝ IPPV, hypovolaemia
 - valsalva etc.
iv. ECG - low amplitudes, flattened / inverted T waves
 - ↓ phase 4 depolarization, ↑ APD
 - bradyarrhythmias

d. respiratory
- ↓ MBC, ↓ D\textsubscript{CO}
- impaired central respiratory drives
 ~ 10-15% of normal O\textsubscript{2} drive
 ~ 30-40% of normal CO\textsubscript{2} drive
 - obstructive sleep apnoea syndrome

e. gastrointestinal
i. decreased apetite, increased weight
ii. gastric stasis & ↓ airway reflexes → ↑ aspiration risk
iii. constipation

f. decreased motor activity, stiffness & muscle cramps, prolonged relaxation of DTR's

g. connective tissue → myxoedema (*pretibial = hyperthyroidism)
i. dry & thickened skin & hair, loss of outer 1/3 of eyebrows
ii. deepening of voice
iii. thickened tongue
iv. amyloidosis
v. carpal tunnel syndrome

h. electrolytes
- ↓ blood volume
- increased ECF fraction
- ↑ ADH secretion / low plasma [Na+]
- impaired renal function / ↓ free water clearance

i. drugs
- impaired liver / renal function → ↑ t\textsubscript{1/2}’s
- decreased MAC for volatile agents
- ↑ sensitivity to sedatives / opioids
Clinical Assessment

a. severity
 - bradycardia
 - hyporeflexia & slow recovery, "hung-up" reflex
 - temperature
 - skin, hair, facies, voice

b. CVS
 - bradycardia
 - IHD, CCF, pericardial effusion
 - if heart normal size, then ?? hypothalamic origin
 - may be **hypertensive** 2° hypercarbia

c. respiratory
 - hypoventilation ± hypercarbia
 - pulmonary oedema
 - recurrent infection
 - OSAS ± development of pulmonary hypertension

d. CNS
 - conscious state
 - airway protection reflexes

e. investigations
 - ECG 12 lead
 - FBE, WCC
 - U&E's, BSL, LFT's
 - TFT's
 - CXR

Myxoedema Coma

- likely scenarios,
 1. hypothyroidism unmasked by *concurrent illness*
 2. known hypothyroid and *emergency surgery*

- precipitating factors,
 1. surgery, trauma
 2. anaesthesia, sedatives, narcotics
 3. sepsis, hyperthermia
 4. any severe illness

NB: mortality ~ 50%
Treatment

a. assisted ventilation with slow correction of hypercarbia

b. IV dextrose for hypoglycaemia - 50% not D₅W

c. water restriction ± hypertonic saline for hyponatraemia

d. passive rewarming for hypothermia ≤ 0.5°C/hr

e. T₃ ~ 5-20 µg IV in 100 ml N.saline slowly over 30-60 min, or
 T₄ ~ 200-500 µg IV (→ more constant T₃ levels)
 **no studies as to best dose or form of replacement

f. hydrocortisone ~ 400 mg on first day, then reducing
 • test adrenal function with short Synacthen test

g. treat underlying illness

h. avoid sedatives, narcotics, etc.

Management for Emergency Surgery

a. avoid sedatives, narcotics

b. intubate if airway reflexes absent ? antacids, ranitidine

c. hydrocortisone ~ 100 mg IV q6h for first 24 hrs

d. commence T₃ replacement if,
 i. no active IHD ? how to be sure
 ii. no depression of conscious state - pre-coma or coma
 iii. surgery can be delayed several hours to assess the effect of T₃
 iv. continuous ECG monitoring available

 → ~ 5-20 µg in 100 ml N.saline IV slowly over 30-60 min

NB: otherwise withhold until after surgery and give low dose slowly
Sick Euthyroid Syndrome

- severe illness, physical trauma, physiological stress may result in,
 1. ↓ protein binding of thyroid hormones
 2. ↓ peripheral conversion to $T_3 \rightarrow \uparrow T_3$
 3. altered regulation of TSH secretion

NB: ↓ serum T_3

T_4 may be low, normal, or rarely ↑

- measurements of T_3, T_4 and levels of hormone binding are usually adequate
- in hypo/hyperthyroidism, changes in free hormone levels parallel changes in total thyroxine
- when the FTI is low, in extremely ill patients, a euthyroid state is established by a normal TSH

Thyroid Nodules

- **Adenomas**
 1. papillary
 2. follicular - most common & most likely to be functional
 3. Hurthle cell

 NB: *functional nodules* of any type are less likely to be malignant

- **Carcinoma**
 - males > females
 - previous irradiation to the neck
 1. follicular epithelium
 i. anaplastic - rare, highly malignant & rapidly fatal
 ii. follicular
 iii. papillary ~ 60%, bimodal frequency of presentation
 - simple excisions ≡ radical neck resections
 2. parafollicular C cells - more aggressive
 - familial incidence
 - **MEN II** → medullary carcinoma
 + *phaeochromocytoma*
 + parathyroid adenomas
PARATHYROID DISORDERS

Hypercalcaemia

NB: incidence ↑’s in the 3-5th decades, F:M ~ 3:1

■ Aetiology

1. factitious
 - stasis, post-prandial
 - polycythaemia, dehydration, high plasma albumin

2. 1° hyperparathyroidism
 i. solitary adenoma ~ 80%
 ii. MEN I - pituitary adenoma and pancreatic islets
 - hypergastrinaemia with Zollinger-Ellison syndrome
 iii. MEN II - medullary carcinoma of the thyroid
 - phaeochromocytoma & parathyroid adenoma
 iv. lithium therapy - ↑ parathyroid function in ~ 10%
 v. rarely carcinoma

3. malignancy
 i. solid tumour with bony 2°’s - breast, prostate
 ii. ectopic parathormone - kidney, lung (~ 10-15%), ?? PGE
 iii. haematological malignancies - *m. myeloma*, leukaemia, lymphoma
 - osteocyte activation factor

4. increased bone turnover - *thiazide diuretics*
 - hyperthyroidism
 - immobilization
 - vitamin A intoxication

5. vitamin D
 i. vitamin D intoxication - high Ca++ & HPO₄²⁻
 ii. ↑ 1,25-(OH)₂-D₃ - *sarcoid* & other granulomatous diseases
 - TB, berylliosis
 iii. idiopathic hypercalcaemia of infancy

6. familial hypocalciuric hypercalcaemia - FHH
 • autosomal dominant trait → > 99% renal calcium reabsorption
 • PTH levels are usually normal, no medical or surgical intervention is required

7. renal failure - severe 2° hyperparathyroidism
 - milk/alkali syndrome, Al’ intoxication

8. other causes - Addisonian crisis
 - phaeochromocytoma
 - excess IVT/ TPN
Clinical Features

NB: initially → polyuria, thirst, fatigue, nausea, vomiting & abdominal pain

a. CNS
- mental disturbance, personality change
- paraesthesia, headache, fever, increased thirst
- cerebral calcifications ± epileptic fits

b. CVS
- bradycardia, asystolic arrest
- increased digoxin toxicity
ECG
- ↓ QT_c, bradyarrhythmias, AV blockade

c. NMJ
- ↑ ACh release
- ↑ excitation / contraction
- ↑ threshold V_m
 * but decrease sensitivity of motor EP
 → weakness, fatigue, paralysis

d. renal
- polyuria ∝ nephrogenic DI
- type II RTA ∝ impaired tubular reabsorption
- nephrocalcinosis ~ 60-70%

e. musculoskeletal
- weakness, fatigue, paralysis, arthralgia
- osteitis fibrosa cystica
 ~ 5x ↑ bone turnover (↑ ALP), bone pain, fractures

f. GIT
- nausea, vomiting, anorexia, weight loss
- constipation, abdominal pain
- gastric hyperacidity (↑ gastrin secretion), peptic ulcer
- pancreatitis

Anaesthetic Considerations

NB: moderate hypercalcaemia, in the absence of cardiovascular or renal compromise presents no specific intraoperative problems

1. CNS
- lethargy, confusion may compromise recovery
2. ECG
- shortened QT_c & risk of AV blockade etc.
3. biochemistry
- associated electrolyte disorders
4. volume status
- polyuria may result in hypovolaemia
5. NMJ blockade
- ↑ sensitivity to nondepolarising agents, difficulty in reversal
Treatment

a. ABC - ventilatory/CVS support
b. correct dehydration - replace deficit with normal saline
c. initiate diuresis - N.Saline at 4-6 l/d
 - frusemide 20-40 mg IV q4-8h
 * beware hypokalaemia & hypomagnesaemia

d. corticosteroids - ↓ GIT absorption / increase excretion
 * not effective in 1° hyperparathyroidism
e. diphosphonate - etidronate
f. correct hypophosphataemia - ↑ GIT absorption
 - ↓ bone uptake & ↑ reabsorption
g. decrease bone release - calcitonin
 - mithramycin
Hypocalcaemia

Aetiology

a. *factitious* - hypoalbuminaemia (N: 37-55 g/l)
 \[\downarrow \text{Ca}^{++} \sim 0.2 \text{ mmol} / \downarrow 10 \text{g per litre} \]
 - K-EDTA tube sample

b. *acute*
 i. acute post-surgical hypoparathyroidism - *most common*
 ii. respiratory alkalosis
 iii. acute pancreatitis
 iv. rhabdomyolysis, MH
 v. hypomagnesaemia - \(\downarrow \) PTH release
 vi. citrate toxicity

c. *chronic*
 i. primary hypoparathyroidism
 - thyroid or parathyroid surgery, \(^{131}\text{I} \) therapy
 - neoplasia
 - granulomatous diseases
 - haemosiderosis, Wilson's disease
 - idiopathic hypothyroidism
 - persistent neonatal form
 - branchial dysembryogenesis (DiGeorge's syndrome)
 - multiple endocrine deficiency autoimmune candidiasis (MEDAC)
 ii. chronic renal failure
 iii. disordered vitamin D metabolism
 - deficiency - reduced intake, liver / renal disease
 - resistance - renal disease, familial
 iv. high dietary \(\text{PO}_4 \) intake

Clinical Features

a. CNS - increased irritability, personality changes
 - oculogyric crises
 - extrapyramidal signs
 - tetany & convulsions

b. NMJ - reduced threshold \(V_m \)
 - neuromuscular excitability
 - reduced ACh release NMJ
 - Chvostek's sign, Trousseau's sign
 - cramps ± tetany
 - stridor ± laryngospasm

29
c. CVS - reduced SVR*
 - negative inotropy* *→ hypotension
 - negative chronotropy
 - prolonged QT_c = QT / \sqrt{RR} < 0.45 s female
 - atrial & ventricular ectopies

 d. other - cataracts
 - rickets, osteomalacia
 - coagulopathy (very rare)

■ Anaesthetic Considerations

- management of hypothyroidism is not surgical, : usually presenting for unrelated reasons
- prolongation of the QT interval may progress to 2:1 AV block
- QT_c is a reliable marker of hypocalcaemia for a given individual, but not within a population
- CCF rarely results from hypocalcaemia, but in the presence of preexisting heart disease, correction of plasma Ca⁺⁺ and Mg⁺⁺ will improve LV performance
- similarly hypotension from any cause will be worse in the presence of hypocalcaemia
- patients may suffer petit mal, focal, Jacksonian or grand mal seizures
- these are resistant to normal therapy, and may actually be made worse due to an anti-vit.D effect
- post-surgery for hyperparathyroidism, marked falls in Ca⁺⁺ & Mg⁺⁺ may be seen in patients with advanced osteitis & "hungry" bones
- potentially fatal complications include laryngeal spasm & seizures

■ hypomagnesaemia results principally in,
 1. ventricular tachyarrhythmias
 2. hypocalcaemic tetany and neuromuscular irritability

NB: which is independent of calcium

- management,
 1. ionised Ca⁺⁺, Mg⁺⁺ and HPO₄ should be measured before & after surgery
 2. QT_c should be checked on a 12 lead ECG
 3. significant or symptomatic levels should be corrected
PITUITARY DYSFUNCTION

Anterior Pituitary Hypersecretion

- **Secretory Cell Types**
 1. somatotrophs - GH
 2. corticotrophs - ACTH
 3. lactotrophs - prolactin
 4. gonadotrophs - FSH, LH
 5. thyrotriph - TSH

- **Hypothalamic Hormones**
 1. **dopamine** - prolactin release *inhibiting* hormone (PRIH)
 - PRL - ↑ by metoclopramide
 - ↓ by bromocriptine
 2. somatostatin - growth hormone release inhibiting hormone (GHRIH)
 3. GHRH - growth hormone releasing hormone
 4. CRH - corticotrophin releasing hormone
 - ACTH - ↓ by cyproheptadine
 5. GnRH / LHRH - gonadotrophin releasing hormone
 6. TRH - thyrotropin releasing hormone

- **Clinical Features**
 1. pituitary adenomas - classified according to hormone secretion
 - ~ 60% are hypersecretory
 2. most common modes of presentation
 i. prolactin - amenorrhoea, galactorrhoea, infertility
 ii. ACTH - Cushing's syndrome
 iii. GH - acromegaly
 iv. nonfunctioning - hypopituitarism
- **Hyperprolactinaemia**
 - often but not invariably associated with *galactorrhoea*.
 - i. females → amenorrhoea
 - ii. males → impotence
 - optimal therapy still controversial
 - the dopamine agonist, *bromocriptine*, is effective in restoring pituitary function
 - also useful for reducing pituitary size prior to surgery
 - there is a risk of rapid growth during *pregnancy*, ∴ surgery is recommended
 1. initial surgery cure rate ≈ 80%
 2. 5 year relapse rate ≤ 50%
 - DXRT has not been uniformly effective
 - artefactual hyperprolactinaemia may be seen with DA antagonists
 → *metoclopramide* may be used to augment breast milk production

- **Acromegaly**
 - characteristic facies, thickened tongue, difficult intubation
 - enlarged nose & mandible, with spreading of the teeth
 - enlarged hands & feet, thickened skin & "myxoedematous" appearance
 - elevated basal GH secretion with absence of *glucose suppression*
 - *glucose intolerance* (GH insulin antagonism)
 - Na⁺, K⁺ and H₂O retention, progressing to *hypertension*
 - cardiomegaly and accelerated *atherosclerosis*
 - osteoporosis ± kyphoscoliosis, may progress to lung pump failure
 - > 99% due to solitary *pituitary adenoma* →
 1. transphenoidal hypophysectomy if localised
 2. transfrontal hypophysectomy if suprastella extension
 3. local DXRT if incomplete excision

- **Cushing’s**

 NB: 60-70% of all cases are associated with a *pituitary microadenoma*

 1. *iatrogenic steroid administration* - most common
 2. pituitary adenoma ≈ 80% (of remainder)
 3. ectopic ACTH ≈ 15%
 4. adrenal adenoma ≈ 4%
 5. adrenal carcinoma ≈ 1%
Anterior Pituitary Hypofunction

1. deficiencies in GH, TSH, ACTH, prolactin or gonadotropin
2. may result in *panhypopituitarism*
3. specific preoperative preparation is required for,
 i. ↓ TSH - *hypothyroidism*
 ii. ↓ ACTH - *Addisonian*
 iii. ↓ GH - deficiency may result in *myocardial atrophy*
4. no preparation required for prolactin or gonadotropin
5. acute deficiencies are often the result of *haemorrhage* into a tumour
 • ~ 25% of histological specimens show haemorrhage
 • may result in - headache
 - N&V, vertigo
 - visual loss, ocular palsies
 - ↓ LOC, hemiparesis
 - fever
 • this requires rapid transphenoidal decompression with steroid cover
Posterior Pituitary Dysfunction

SIADH

1. **aetiology**

 i. malignancies → autonomous ADH release
 - lung, pancreas, sarcomas, Hodgkin's, thymoma

 ii. non-malignant pulmonary disease
 - TB, lung abscess, empyema, pneumonia, viral pneumonitis, CAL

 iii. CNS disease
 - trauma - CHI, fractures
 - vascular accidents - SAH, SDH, thrombosis
 - infections - encephalitis, meningitis (TB, bacterial)
 - GBS, SLE, AIP

 iv. drugs
 - chlopropamide, cyclophosphamide, carbamazepine, clofibrate
 - GA's, opioids, TCA's, oxytocics
 - vincristine, vinblastine

 v. miscellaneous - IPPV, hypothyroidism, (? hypoadrenalism)

2. patient age and anaesthetic technique have **no effect** on occurrence of SIADH

3. clinical features relate to **hyponatraemia** and **cerebral oedema**
 - weight gain, weakness, lethargy, confusion
 - obtundation, disordered reflexes, convulsions

4. biochemistry

 i. urinary sodium > 20 mmol/l - ie. not Na\(^+\) retaining

 ii. serum sodium < 130mmol/l

 iii. serum osmolality < 270mosm/l

 iv. low serum urea, creatinine, urate & albumin

 v. urine hypertonic relative to plasma

 vi. inability to excrete a water load

 vii. elevated plasma ADH level

5. management → aim < 2 mmol/l/hr change unless seizures
 - fluid restriction
 - N.saline & diuretics
 - hypertonic saline - rarely
 - demethylchlortetracycline → ↓ tubular ADH response
 → "nephrogenic DI"

NB: the definition of true SIADH requires the absence of drugs, normal cardiac, renal, adrenal and liver function, and correction by water restriction alone
Diabetes Insipidus

1. **central DI**
 i. idiopathic ~ 30%
 ii. traumatic ~ 30%
 - CHI, neurosurgery
 iii. neoplastic - 1° or 2°
 - commonly breast or lung
 iv. vascular lesions - post-partum necrosis
 - aneurysm
 - hyperviscosity syndrome
 v. infection - TB
 vi. inflammatory - sarcoidosis
 vii. hypoxic brain damage

2. **nephrogenic DI**
 i. congenital and familial
 ii. hypercalcaemia - eg. hyperparathyroidism
 iii. hypokalaemia - Conn's syndrome
 iv. acute renal failure - post-obstructive renal disease
 - recovery phase of ATN
 - pyelonephritis
 - transplantation
 - polycystic kidney disease
 v. drugs - methoxyflurane, enflurane, F-
 - diuretics, lithium
 - demeclocycline
 vi. systemic disease - amyloidosis
 - myeloma
 - sickle cell disease
 vii. ADH resistant DI of pregnancy - high vasopressinase

Anaesthesia

a. fluid and electrolyte replacement
 - avoid hypertonic solutions & check biochemistry regularly

b. ADH analogues
 - vasopressin IV - use minimum required amount
 - especially in pregnancy, or patients with IHD
 - interaction with catecholamines etc.
 - DDAVP ~ 1-4 µg q12h (adult)

c. other drugs
 - thiazides
 - chlorpropamide, chlofibrate
RENNAL DISEASE

Assessment

NB: minimal physical findings unless
- disease is advanced, or
- hypertension is present

1. **urinalysis**
 i. gross appearance - macroscopic haematuria, infection
 ii. microscopy - cellular casts, bacteria, abnormal cell forms
 iii. **pH**
 - normal acid load ~ 60-70 mmol/day
 - minimum normal pH ~ 4.4
 - failure of acidification & acidaemia in insufficiency
 • normally three mechanisms for renal excretion of acid,
 - reabsorption of filtered HCO$_3^-$
 - acidification of tubular buffers (titratable acid)
 - formation of ammonia & excretion of ammonium
 iv. **specific gravity**
 - measure of concentrating ability
 - ~ 1.030-1.050 → good concentrating ability
 - ~ 1.0101 → ~ plasma 290 mosm/kg
 fixed in renal disease
 v. **protein**
 - ≤ 150 mg/day normally excreted
 - > 750 mg/day → **massive proteinuria**
 • usually indicative of severe **glomerular disease**
 • may also be seen in - failure of normal protein reabsorption
 - increased plasma protein concentrations
 - presence of an abnormal plasma protein
 vi. **glucose**
 - normally small amount escapes reabsorption
 - abnormally increased filtered load (IDDM, pregnancy)

2. **complete blood picture**
 i. **anaemia**
 • decreased **erythropoietin** (erythropoiesis stimulating factor, ESF)
 • absence of ESF in anephric patients → Hb ~ 6-8 g/dl
 ii. **WCC**
 • decreased with marrow suppression 2° immunosuppressive therapy
 • delayed rise in systemic infection but an ominous sign
 iii. **platelets**
 • usually normal number, or mild thrombocytopenia
 • abnormal function in absence of dialysis
3. **creatinine & urea**
 i. **creatinine**
 - newborn ~ maternal
 - infant ~ 18-35 µmol/l
 - child ~ 30-60 µmol/l
 - youth ~ 45-90 µmol/l
 - male ~ 55-120 µmol/l
 - female ~ 45-95 µmol/l
 - pregnancy ~ 30-80 µmol/l
 - virtually constant production from muscle turnover
 - freely filtered at the glomerulus & **negligible secretion** in distal nephron
 → $\propto 1/GFR$
 - creatinine clearance almost a direct measure of GFR
 - however, the wide range of "normal" values allows ~ 50% ↓ GFR with a creatinine in the "normal" range
 - not a reliable indicator when GFR is rapidly changing, ie. lags behind
 ii. **urea**
 - wide range of "normal" values \propto
 - dietary protein intake
 - anabolism / catabolism
 - hydration
 - rate of urine flow

4. **serum electrolytes**
 - Na⁺, K⁺, Cl⁻ and HCO₃⁻
 - these are usually normal until there is marked deficiency of renal function
 - **hyperkalaemia** does not develop until there is **uraemia**

5. **blood gases**
 i. pH - metabolic acidaemia
 ii. P_{aCO_2} - incomplete respiratory compensation
 iii. P_{aO_2} - usually normal until GFR < 50%
 - may be decreased in fluid overload / pulmonary oedema

6. **CXR**
 - presence & extent of hypertensive CVS disease, ie. decompensated LVH & CCF
 - fluid overload in severe CRF
 - pericardial effusion in uraemic patients

7. **ECG**
 i. hypertension / LVH
 ii. IHD
 iii. hyperkalaemia
 iv. digitalis toxicity - ↓ QT interval & ST segments, VPC's
 v. hypocalcaemia - ↑ QT interval
Common Causes of CRF

1. diabetic nephropathy ~ 28%
2. hypertension ~ 24%
3. glomerulonephritis ~ 21%
4. polycystic kidney disease

Effects of Renal Failure

1. metabolic
 - Na⁺ retention or depletion
 - hyperkalaemia
 - metabolic acidosis
 - hyperphosphataemia, hypocalcaemia
 - hypermagnesaemia
 - hyperuricaemia

2. endocrine
 - 2° hyperparathyroidism
 - vitamin D deficiency
 - renal osteodystrophy
 - glucose intolerance
 - amenorrhoea
 - impaired testicular function, impotence

3. haematologic
 - anaemia
 - thrombocytopenia / thrombocytopathy, poor haemostasis
 - abnormal WBC function

4. cardiorespiratory
 - hypertension
 - accelerated atherosclerosis
 - CCF
 - pericarditis ± effusion
 - pleuritis ± effusion
 - pneumonitis

5. neuromuscular
 - encephalopathy
 - peripheral neuropathy
 - dialysis dementia
 - dialysis disequilibrium

6. gastrointestinal
 - anorexia, nausea, vomiting
 - peptic ulcer disease
 - gastroenteritis
 - ascites
 - diverticulosis
 - viral hepatitis

7. skin
 - pruritis
 - ecchymoses
 - increased pigmentation

Anaesthesia & Concurrent Disease
Consequences of CRF

- The specific causes of the uraemic syndrome are unknown
- Probably the breakdown products of protein and amino acids,
 1. urea - most abundant
 - May account for nausea, anorexia & malaise
 2. guanidosuccinic acid - contributes to platelet dysfunction
 3. "middle molecules" are indicted in uraemic neuropathy
 4. high levels of circulating polypeptide hormones - PTH, CRF

- With progressive nephron loss there is decreased concentrating ability
 → isosthenuria, polyuria & nocturia

- Early in CRF Na⁺ balance is maintained by increased fractional excretion
- Later the remaining nephrons are unable to compensate and retention of dietary sodium results in hypertension & volume overload
- However, Na⁺ restriction may equally result in depletion and superimposed prerenal azotaemia
- Little or no change occurs in pH, P_{aCO_2} or HCO_3^- until the GFR < 50%
- Early retention of H^+ causes only mild non-progressive acidosis, probably due to buffering in bone
- Later retention of phosphate, sulphate & other unmeasured anions results in a high anion gap acidosis

- With advanced disease, phosphate balance is achieved by a decrease in tubular reabsorption, mediated by an increased secretion of PTH
- This is mediated by,
 1. a decrease in plasma Ca++ to phosphate retention
 2. The elevated plasma phosphate itself

- Results in many of the bone changes of renal osteodystrophy
- This is complicated by,
 1. skeletal resistance to PTH, and
 2. reduced 1,25-(OH)$_2$D$_3$

- Signs & symptoms generally occur late, when GFR < 25%
1. **barbiturates**
 - except for *phenobarbital* all of the barbiturates are hepatically excreted
 - termination of action is by redistribution & extensively metabolised
 - STP is ~ 75-85% protein bound & the *free fraction* ↑s from ~ 15% → 30%
 i. acidaemia → ↑ nonionised fraction & ↓ protein binding
 ii. ↓ albumin → ↓ protein binding
 - therefore, require decreased induction dose
 - however, clearance and *V*\textsubscript{ass} are increased and elimination half-life normal
 - redistribution is more rapid & supplemental doses may be required

2. **propofol**
 - renal disease has little effect on the pharmacokinetics of propofol, confirming the high capacity of the liver to metabolise the drug

3. **opioids**
 i. fentanyl
 - metabolised in the liver, only ~ 7% eliminated by the kidney
 - protein binding ~ 80% & *V*\textsubscript{ass} is large and little altered
 ii. morphine
 - protein binding is low ~ 20-45%, therefore little altered
 - *V*\textsubscript{ass} is large and metabolism mainly in the liver, ?? inactive glucuronides
 - "thus, administration...in premedicant doses should not cause prolonged depression" (RDM)

4. **benzodiazepines**
 - extensively hepatically metabolised prior to excretion
 - increased effect from these drugs is generally ascribed to the uraemic process

5. **muscle relaxants**
 i. suxamethonium
 - used without problems in anephric patients
 - haemodialysis & uraemia reduce pseudocholinesterase levels but not to a significant degree
 - acetylcholinesterase levels are unaltered by haemodialysis
 - may result in transient hyperkalaemia, therefore dialyse first
 ii. *dTC* & pancuronium
 - ~ 50% cleared through the kidney, for pancuronium as 3,17-OH metabolites
 - there is no change in NMJ receptor sensitivity in uraemia
 - elimination half-life prolonged ~ 2x, therefore avoid in renal insufficiency
 iii. vecuronium
 - originally thought unaltered, but ~ 20-30% cleared through the kidney
 - elimination half-life prolonged ~ 1.5x
 iv. atracurium
 - no significant change
 - nonenzymatic alkaline hydrolysis & ester hydrolysis (non-BuChE)
6. **anticholinesterases**
 - there are no major differences between the changes for neostigmine, pyridostigmine or edrophonium
 - renal excretion is important for all 3, with 50-70% being renally excreted
 - elimination is delayed, slightly greater than for NMJ blockers
 - . . . recurarisation following reversal in renal failure is usually due to some cause other than diminished action of anti-ACh therapy
 - for both anti-AChE and NMJ blockers, excretion appears normal in well functioning transplants

7. **anticholinergics**
 - 25-50% of atropine & glycopyrrolate are excreted unchanged in the urine
 - potential for accumulation, however, no problems with single dose administration
 - scopolamine should probably not be substituted due to its potent CNS depressant side-effects, though, single doses are probably OK

8. **digoxin**
 - ~ 70% excreted unchanged in the urine
 - monitoring of blood levels is the most reliable guide
 - > 0.8 ng/ml therapeutic
 - > 1.8 ng/ml toxic

9. vasoactive agents
 - propranolol & CEB’s have virtually complete hepatic metabolism
 - thiazides / frusemide 70-90% renal excretion, . . . prolonged duration of action
 - trimethaphan is hydrolysed by BuChE and suitable for acute reduction of BP
 - use of SNP carries the risk of cyanide & thiocyanate toxicity, the later having a half-life of 4 days, which is prolonged further in renal failure
 - hydrallazine is ~ 15% renally excreted & may show some accumulation

<table>
<thead>
<tr>
<th>Drugs with Significant Renal Excretion</th>
</tr>
</thead>
<tbody>
<tr>
<td>dTC</td>
</tr>
<tr>
<td>pancuronium</td>
</tr>
<tr>
<td>gallamine</td>
</tr>
<tr>
<td>metocurine</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

digoxin
- diazoxide
- acetzolamide
- chlorthiazide
- amiloride
- chlorpropanide
- frusemide

| colistin |
| polymin B |
| kanamycin |
| gentamicin |
| neomycin |
| vancomycin |
| lincomycin |
| streptomycin |
| sulphonamides |
Acute Renal Failure

Definition
ARF

- **biochemistry**
 - urea > 20 mmol/l
 - creatinine > 200 µmol/l
 - U/P creatinine < 20 "filtration failure"

- **persistent ↓ GFR**
 < 15-20 ml/min
 < 10-15 ml/min/m²

- **urinary indices**
 - Na⁺ & osmolality → tubular dysfunction

- **urine output**
 < 0.5 ml/kg/hr
 * but "oliguria" ≠ ARF

Aetiology

- **prolonged impairment of renal blood flow**
 - hypovolaemia, dehydration
 - hypotension
 - cardiac failure
 - renovascular disease
 - intra-abdominal hypertension
 - hepatorenal disease

- **intrinsic renal disease**
 - nephrotoxic tubular disease - ATN
 - ischaemic tubular disease ? ATN
 - glomerulonephritis
 - interstitial nephritis
 - infection - bacteria, TB
 - trauma

- **obstructive renal disease**
 - calculi, prostatic, stricture, tumour
 - trauma, surgical, retroperitoneal fibrosis

NB: alternative classification

1. filtration failure
2. tubular dysfunction
3. oliguric or non-oliguric
Risk Factors

a. acute disease states - sepsis, SIRS
- jaundice, liver dysfunction
- raised intra-abdominal pressure
- renal trauma, soft tissue trauma
- transfusion reaction, DIC
- anaphylaxis, anaphylactoid reactions
- muscle injury, thermal burn, electrocution

b. chronic disease states - advancing age
- CCF, poor LV function
- hypertension
- diabetes mellitus
- renal disease
- hyperuricaemia
- peripheral vascular disease

c. metabolic changes - advancing age
- tachycardia, hypotension
- elevated CVP, reduced RVPP
- high or low CO, SVR
- abnormal O_2 extraction ratio, cellular block
- oliguria, polyuria, osmolar diuresis
- abnormal urine indices ± fluid balance, oedema
- high or low protein intake

d. acute drug therapy
i. ATN - aminoglycosides, amphotericin, cephalosporins
- diuretics, radiocontrast agents, rifampicin
- lithium, cisplatin, mithramycin

ii. interstitial nephritis - penicillins, sulphonamides, rifampicin, cephalosporins
- frusemide, thiazides, triamterene
- aspirin, NSAID's
- cimetidine, captopril

e. chronic drug therapy - NSAID's, diuretics, cyclosporin

f. procedures - aortic / renal cross-clamping
- major transfusion
- surgery (CNS, thoracic, major orthopaedic & abdominal)

g. impaired RBF - hypotension, malignant hypertension
- renal artery occlusion
- hepatorenal failure
- endotoxaemia
- renal vein thrombosis
- renal venous hypertension (CVP, IABP, abdo surgery)
- HUS, DIC
h. **toxic causes**
 - allopurinol, aminoglycosides, cephalosporins, amphotericin, chemotherapeutic agents, hydrallazine, EDTA, lithium, mannitol, methoxyflurane, paracetamol, penicillamine, probenecid, procainamide, propylthiouracil, radiocontrast media, rifampicin, sulphonamides, thiazides, vit. D
 - CCl₄, ethylene glycol, heroin, HgCl₂, heavy metals, methanol, organophosphates, toluene, uranyl nitrate

i. **metabolic causes**
 - hypercalcaemia, hypokalaemia
 - hyperuricaemia
 - pigments (bilirubin, myoglobin, Hb)
 - hyperphosphataemia
 - high plasma oncotic pressure

j. **post-renal**
 - urethral/bladder neck obstruction
 - bilateral ureteral obstruction
 - stones, clot, tumour
 - papillary necrosis
 - retroperitoneal fibrosis
 - surgical ligation
 - bladder rupture, urethral trauma
 - renal pelvic trauma

<table>
<thead>
<tr>
<th>Urinary Indices of Renal Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>urine osmolality</td>
</tr>
<tr>
<td>U/P osmolality</td>
</tr>
<tr>
<td>urine SG</td>
</tr>
<tr>
<td>urine [Na⁺]</td>
</tr>
<tr>
<td>urine [Cl⁻]</td>
</tr>
<tr>
<td>U/P urea</td>
</tr>
<tr>
<td>U/P creatinine</td>
</tr>
<tr>
<td>RFI</td>
</tr>
<tr>
<td>FE_{Na}</td>
</tr>
</tbody>
</table>
ARF Prophylaxis & Protection

Methods

1. **physiological**
 i. blood volume
 ii. cardiac output, RBF/GFR
 iii. O_2 delivery
 iv. sodium excretion
 v. nutrition

2. **pharmacological**
 i. avoidance of nephrotoxins - contrast dyes, antibiotics, pigments, etc.
 ii. avoidance of inhibition of autoregulation - NSAID's
 iii. diuretics
 iv. renodilators

3. **physical**
 i. limitation of aortic clamp times
 ii. avoidance of embolisation
 iii. minimise direct trauma & handling
 iv. limitation of increases in intra-abdominal pressure
 v. avoidance of post-renal obstruction

Physiological Defence

1. defence of blood volume - IV fluids (Na$^+$ containing3)
 - euvolaemia or mild hypervolaemia

2. maintenance of CO ± MAP - IV fluids
 - antiarrhythmics
 - inotropes

3. high sodium excretion4 - ↓ tubular reabsorption \rightarrow ↓ renal VO$_2$

4. maintain DO$_2$ - normal [Hb], S_pO_2 and avoidance of hypercarbia/acidosis

5. nutrition - proven benefit in outcome from established oliguric renal failure
Diuretics

1. mannitol
 - found to be protective in many animal studies
 - mainly ischaemic (NA & renal artery clamping) and nephrotoxic models
 - few human studies, most uncontrolled
 → reversal of oliguria but not renal function
 - probably beneficial in nephrotoxic injury
 → pigments, amphotericin, cisplatin, IV contrast etc.
 - ?? mechanisms,
 i. increase renal vasodilatory PG synthesis
 ii. free-radical scavenger
 iii. osmotic diuresis
 iv. "anti-sludging" tubular cytoprotection

2. frusemide
 - animal studies variable → benefit in ischaemic but not nephrotoxic injury
 - conflicting results for prophylactic use in surgical patients
 - effects negligible once volume is aggressively controlled
 - no overall benefit in established oliguric renal failure
 - theoretical benefit in critical ischaemic lesion (↓ O₂-demand)

 NB: Brown, Ogg & Cameron (1980)
 i. non-oliguric converted to polyuric renal failure ~ 80%
 polyuric renal failure maintained ~ 100%
 ii. no difference in the number of dialysis runs required (7 vs 6)
 iii. no difference in mortality
 iv. no difference in biochemical renal recovery

3. low dose dopamine
 - ↑ DO₂ via modest ↑ CO (~ 20% on low dose), and usually an ↑ RBF
 - potential ↓ renal VO₂ due to inhibition of Na⁺ reabsorption
 - potential renal vasodilator in normal man, but ?? not in septic patients
 - conflicting animal evidence regarding protective effect
 - known diuretic effect → demonstrated in uncontrolled human studies
 - no controlled human studies looking at long term renal function or mortality
 - adverse effects include,
 i. extrarenal side-effects - tachyarrhythmias
 - ↑ PCWP, RV & LV afterload
 - ↑ shunt fraction & ↓ PₐO₂
 - ↓ central respiratory drive
 ii. impairs TGF mechanism, thereby may worsen O₂ supply/demand
 iii. the induced diuresis is not always associated with an increase RBF
 iv. diuresis may mask, or augment hypovolaemia & renal hypoperfusion
 - similar ↑ RBF achievable with inotropes not affecting tubular function
• tubular & DA₁-receptor effects blocked by commonly used drugs

NB: "if dopamine, or other diuretics are used in the setting of ARF, then greater attention must be paid to the basic elements of critical care - blood volume, renal perfusion pressure (MAP) and cardiac output - as urine output can no longer be used as a guide to the adequacy of RBF" Duke, Bersten AIC 1992

■ Other Agents

• Ca⁺⁺ entry blockers, proven lack of benefit
• agents with promise but inadequate studies,
 1. ATP-MgCl₂
 2. inosine
 3. clonidine
 4. chlorpromazine
Renal Transplantation Surgery

Preoperative Preparation

1. management of CRF "psyche"
2. routine *dialysis* *many factors are not* corrected by dialysis
 i. control of hypertension
 ii. correction of metabolic abnormalities - fluid & Na⁺ overload
 - K⁺, PO₄³⁻, Ca²⁺, acidosis
 - glucose intolerance
 iii. correction of platelet dysfunction / coagulopathy
3. control / elimination of intercurrent *infection* or tumour
4. provision of an adequate *haematocrit*
 i. transfusion - previous studies showed improved graft survival
 - effect negligible since introduction of *cyclosporin*
 ii. rDNA erythropoietin
 iii. [Hb] > 10 g/dl - difficult to achieve and carries risk of circulatory overload
5. correction of residual *coagulopathy* of present
6. assessment & optimisation of concurrent problems
 i. atherosclerosis, IHD, CCF
 ii. diabetes
 iii. peptic ulcer
7. premedication
Anaesthetic Management

1. obtain IV access - CVC line if to be used by home team
 * avoid use of fistula arm
2. ensure adequate *volume status* prior to induction (NB: body weight)
3. *immunosuppressive & antibiotic* therapy is begun prior to induction - check!
4. preoxygenation
5. IV induction / intubated relaxant GA / IPPV to normocarbia
 i. slightly smaller induction dose of STP
 ii. suxamethonium if required, atracurium for maintenance
 iii. isoflurane probably agent of choice
 iv. moderate doses of opioid - fentanyl/morphine
6. *regional anaesthesia* has advantages, but length of procedure effectively necessitates combined GA/epidural
 i. reduced anaesthetic requirements - analgesia & muscle relaxation
 ii. good postoperative analgesia
 iii. decreased stress response
7. support of *transplanted kidney function*
 i. maintain MAP, CO, filling pressures (CVP)
 ii. mannitol ± frusemide
 iii. avoid nephrotoxic agents
8. control of perioperative haemodynamics - hypertension, tachycardia
9. postoperative *pain relief*

NB: no outcome studies showing any difference between any of the used techniques

NB: with current transplant preservation techniques there is little or no justification in anaesthetising a patient who is inadequately prepared from a haemodynamic or biochemical viewpoint;
dialysis should be performed preoperatively in all patients if not recently done; patients with severe concomitant system disease are infrequently offered transplantation, however the odd exception occurs
TRANSURETHRAL RESECTION TURP

- **glycine 1.5%** is the most commonly used irrigating fluid,

 a. permeate solute

 b. **tonicity** \(\sim 188\text{ mosm/kg}\)

 c. intracellular oedema may occur following absorption

 d. toxic effects may occur 2º to,

 i. **ammonia** - metabolic by-product of glycine

 ii. **glycine** itself

NB: acute severe *hyponatraemia* leading to *cerebral oedema* is the most serious result,

- *hyperglycinaemia* → may cause *visual disturbances*
- *hyperammonaemia* → may result in *delayed coma*

Elevated levels of nonessential amino-acids may result in N & V

Presentation

1. **neurological**

 i. nausea, vomiting

 ii. apprehension, disorientation

 iii. visual disturbances

 - only with glycine and in the presence of hyponatraemia

 - usually "dimming" or "no light perception"

 - usually alert but also complain of N&V

 - onset within 30 minutes & duration up to 12 hours

 - fundoscopy normal, light responses *normal* with mild cases

 iv. stupor, coma

 - onset of coma is variable, from 15 minutes to 10 hours

 - examination consistent with metabolic encephalopathy

 - duration from 8-120 hours, with no long-term functional decrement

 v. seizures

2. **cardiovascular**

 i. ↑CVP, ↑BP, ↓HR

 ii. angina ± ECG changes of IHD

 iii. CCF & cardiovascular collapse
Aetiology

- ideal properties for an irrigating fluid would be,
 i. allow clear visibility
 ii. non-electrolytic - allow diathermy
 iii. isotonic, nonhaemolytic
 iv. non-toxic when absorbed
 v. not metabolised
 vi. rapidly excreted
 vii. mild osmotic diuretic

- other solutes used include sorbitol, mannitol and urea
- factors affecting the rate of absorption,
 1. hydrostatic pressure → limit height ≤ 70 cmH₂O
 2. duration of surgery → limit duration ≤ 1 hour
 3. number & size of venous openings
 4. surgical skill / experience
 5. peripheral venous pressure

- absorption may be intravascular or extravascular, the later producing effects over a longer time frame cf. intravascular absorption

Glycine Absorption

1. dilutional hyponatraemia
 - a ↓ [Na⁺] of 20-30 mmol/l implies absorption of 3-4 litres of solution
 - [Na⁺] < 120 mmol/l indicates a severe situation
 - the [Na⁺] post-surgery only roughly correlates with the volume absorbed
 - diffusion of H₂O into the ICF and renal elimination reduce the degree of change
 - the rate of absorption is also important
 - also the symptoms of hyponatraemia are related to the speed of onset of change,
 i. [Na⁺] < 120 mmol/l → widened QRS
 restlessness, confusion
 ii. [Na⁺] < 115 mmol/l → widened QRS, elevated ST segments
 N&V, confusion, stupor (rarely coma)
 iii. [Na⁺] < 110 mmol/l → VT or VF
 seizures, coma

2. osmolality ~ 2.[Na⁺ + K⁺] + [glucose] + [urea] mmol/l
 - glycine 1.5% ~ 188 mosm/l, cf/ plasma ~ 285 mosm/l
 - therefore, hyponatraemia may occur but the plasma osmolality remains ~ normal
 - patients with the "TURP syndrome" → osmolar gap > 10 mosm/l
3. **tonicity**
 - describes the osmotic effect of a solute relatively restricted to one body compartment
 - cannot be measured but estimated by $2, [\text{Na}^+] + [\text{glucose}]$
 - mannitol & sorbitol are osmotically active solutes, being confined to ECF
 - urea passes freely into cells and has no significant effect on tonicity
 - **glycine** is a small amino-acid and also moves into the ICF upon absorption
 \[\rightarrow \text{ie. urea & glycine expand both ECF & ICF upon absorption} \]
 - alterations of tonicity are responsible for changes of cell volume, and acute hypotonicity is associated with cerebral oedema

4. **colloid osmotic pressure**
 - acute decreases in COP **do not** result in oedema in the noninjured brain

5. **potassium**
 - usually no change during TURP using glycine
 - may be small rise ~ 0.5 mmol/l, possibly due to alteration of transmembrane electrolyte exchange
 - there may be a small amount of **haemolysis**, but clinically insignificant

6. **plasma glycine**
 - glycine is an **inhibitory neurotransmitter** in the mammalian CNS
 - may act upon receptors in the **retina** with transient blindness
 - reports of visual loss may be 2° to cerebral oedema or direct toxicity
 - **ammonia** and other nonessential amino acids are metabolic byproducts
 - N&V has been associated with increases of serine, alanine & glutamate
 - hyperammonaemia results in \[\uparrow \text{inhibitory neurotransmitters} \]
 \[\downarrow \text{excitatory neurotransmitters} \]
 \[\rightarrow \text{stupor & coma} \]
 - plasma ammonia levels may correlate poorly with glycine levels
 - NH$_3$ usually converted to **urea** in the liver
 - patients deficient in arginine or with liver disease \[\rightarrow \text{high NH}_3 \text{ levels} \]
 - urinary excretion is **not** a significant pathway of glycine

Management

- **Mildly Symptomatic Patient**
 i. continue monitoring
 ii. supplemental O$_2$
 iii. send blood for electrolytes & measured osmolality
 iv. small dose of loop diuretic if overloaded
 - most will spontaneously diurese without treatment
 v. conclude surgery if appropriate
The Unconscious Patient

1. causes of unresponsiveness
 i. supratentorial mass lesions
 ii. infratentorial mass lesions or destruction
 iii. metabolic coma
 iv. anaesthesia / paralysis
 v. psychiatric unresponsiveness

2. evaluation of metabolic coma
 i. HR, BP, ECG, $S_{P_{O_2}}$
 ii. venous blood - BSL
 - Na^+, K^+, Cl^-, Ca^{++}, PO_4^{++}, HCO_3^-
 - Cr/Ur
 - osmolality
 - glycine & ammonia
 - LFT's
 iii. arterial blood - P_{aO_2}, P_{aCO_2}, pH, HCO_3^-
 iv. drugs - therapeutic & recreational

3. acute hyponatraemia $[Na^+] < 120$ mmol/l
 i. N.Saline or 2N.Saline ± loop diuretic
 - only until the plasma Na^+ is > 120 mmol/l
 - complete correction is then achieved by fluid restriction over days
 - little evidence that mild hypo-osmolality is harmful
 - too rapid correction may → central pontine myelinolysis or ICH
 - CPM not yet reported following correction of acute hyponatraemia & TURP
 - supported by animal studies showing CPM with chronic states
 ii. dialysis if in CRF ? SCUF
 iii. others
 - $NaHCO_3$ 8.4% if hypertonic saline is not available
 - Ca^{++} if there is an associated deficiency

Prevention

1. limited resection time < 1 hour
2. hydrostatic pressure < 70 cmH$_2$O
3. early detection of symptoms more feasible under spinal anaesthesia
4. management of spinal induced hypotension better with vasopressors, cf. large volumes of crystalloid
5. facility for rapid measurement of plasma $[Na^+]$ in the institution
6. open prostatectomy should be considered a viable alternative
 - reduced reoperation rates & higher 5 year survival
Bladder Perforation

- a not uncommon complication of TURP ~ 1%
- majority are made with the cutting loop or knife blade, rarely with the resectoscope or from overdistension of the bladder
- most are extraperitoneal & result in periumbilical, inguinal or suprapubic pain
- there may be irregular return of irrigating fluid

Extracorporeal Shock-Wave Lithotripsy

- moderate to severe levels of pain from dissipated energy through the tissues
- epidural frequently used, though GA also used in some centres
- problems encountered include,
 1. monitoring while immersed in a water bath
 i. remote position of the patient
 ii. difficulty obtaining an adequate QRS signal, necessary for timing of the SW
 iii. electrical hazards associated with water immersion
 iv. demand pacemakers may be damaged by ESWL
 2. physiological changes with immersion
 i. increased venous return
 ii. decreased FRC & TV
 3. effects of ESWL
 i. arrhythmias - seen with early use due to timing of SW
 - now timed 20 msec after the R-wave, during ERP
 ii. pain
 iii. damage to other tissues - pregnancy
 - orthopaedic hip prostheses

- later generation lithotripters do not require water immersion & use lower energy pulses
- these require considerably less sedation/analgesia

- Melbourne course lecturer → preferred technique is SV/GA using a laryngeal mask
- due to positional discomfort and moderate pressure effects of transducer
LIVER DISEASE

Parenchymal Disease

- **Causes of Acute Hepatitis**

1. **infective**
 - Hepatitis A, B, C, Delta
 - EBV, CMV, HSV, Coxsackie, HIV

2. **drugs**
 i. cholestasis
 - alcohol, chloramphenicol, androgens, tetracyclines,
 oestrogens, OCP, erythromycin, chlorpromazine,
 chlorpropamide
 ii. hepatitis
 - α-methyl-dopa → 5% abnormal LFT's
 1% hepatitis
 0.15% CAH
 - paracetamol, phenytoin, isoniazid
 - halothane, enflurane

3. **toxins**
 - CCl₄, vinyl chloride, methanol (formaldehyde)
 - Amanita phalloides (mushroom)

4. **cardiovascular**
 - hypovolaemic shock, ischaemia
 - cor pulmonale, RV failure, CCF, acute TI
 - Budd-Chiari syndrome

5. **metabolic**
 - Wilson's disease
 - Haemochromatosis
 - alcohol
 - parenteral nutrition
 - α₁-antitrypsin deficiency

6. **autoimmune**
 - chronic active hepatitis
 - drugs
 - vasculitis, SLE, UC, PN
 - 1° biliary cirrhosis
<table>
<thead>
<tr>
<th>Parameter</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus</td>
<td>27 nm</td>
<td>42 nm, DNA</td>
<td>togavirus</td>
<td>defective RNA</td>
</tr>
<tr>
<td>Incubation</td>
<td>2-6 wks (~4)</td>
<td>6-24 wks (~10)</td>
<td>2-24 wks (~7)</td>
<td></td>
</tr>
<tr>
<td>Onset</td>
<td>acute</td>
<td>insidious</td>
<td>insidious</td>
<td></td>
</tr>
<tr>
<td>Seasonal</td>
<td>winter</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>children, young adults</td>
<td>any</td>
<td>adults</td>
<td>IV drug users</td>
</tr>
<tr>
<td>Transmission</td>
<td>faecal/oral</td>
<td>haematogenous, percutaneous, placental, STD</td>
<td>haematogenous percutaneous</td>
<td>coinfection, or superinfection with HBV</td>
</tr>
<tr>
<td>Severity</td>
<td>mild</td>
<td>often severe</td>
<td>mod-severe</td>
<td></td>
</tr>
<tr>
<td>Prognosis</td>
<td>good</td>
<td>HB&CV worse with age & debility</td>
<td>poor</td>
<td></td>
</tr>
<tr>
<td>Chonicity</td>
<td>rare</td>
<td>occasional ~ 5-10%</td>
<td>common ~ 10-50%</td>
<td>common</td>
</tr>
<tr>
<td>IgG-Ab</td>
<td>good</td>
<td>needle stick HBV-IgG</td>
<td>none ? pooled IgG</td>
<td>none</td>
</tr>
<tr>
<td>Carrier</td>
<td>rare</td>
<td>0.1-1.0% (< 30% O/S)</td>
<td>~ 1.0%</td>
<td>common</td>
</tr>
<tr>
<td>Mortality</td>
<td>rare</td>
<td>~ 1%</td>
<td>??</td>
<td>~ 2%</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>anti-HAV IgM</td>
<td>HBsAg anti-HBs,c,e</td>
<td>anti-HCV</td>
<td>anti-HDV</td>
</tr>
</tbody>
</table>

Complications of Hepatitis B

- cirrhosis with portal hypertension ~ 15-30%
- carrier state (HBsAg / HBcAb) ~ 5%
- chronic active hepatitis ~ 3-5%
- massive hepatic necrosis ± encephalopathy
- primary hepatic carcinoma
- immune complex syndromes - serum sickness - polyarteritis - glomerulonephritis - urticaria
Perioperative Considerations

<table>
<thead>
<tr>
<th>Liver Function Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
</tr>
<tr>
<td>Aspartate transaminase(^1) AST / SGOT Alanine transaminase(^2) ALT / SGPT</td>
</tr>
<tr>
<td>Alkaline Phosphatase(^2) ALP</td>
</tr>
<tr>
<td>Gamma-glutamyl transpeptidase GGT</td>
</tr>
<tr>
<td>5-Nucleotidase</td>
</tr>
<tr>
<td>Albumin</td>
</tr>
<tr>
<td>Prothrombin time(^3)</td>
</tr>
<tr>
<td>Bilirubin</td>
</tr>
</tbody>
</table>

\(^1\) AST also in heart, rbc’s, muscle
\(^2\) ALP is more specific for liver, does not correlate with prognosis
\(^3\) ALP origin: liver, bone, intestine, placenta & lung
\(^4\) ALP increase does have worse prognosis

Liver Dysfunction

- hypoalbuminaemia
 - low COP, increased tendency to oedema formation
- coagulopathy
 - ↓ vit K dependent factors
- septicaemia
 - immune dysfunction
- toxaemia
 - metabolites, bacteria, toxins
- amino-acid imbalance
 - low branched-chain / high aromatic
- drugs
 - prolonged effect
- hyperammonia
 - not cleared
- severe hypoglycaemia
 - impaired glucose metabolism
- citrate toxicity
 - impaired metabolism with large volume transfusions
 - especially the anhepatic phase of transplantation
 - Rx CaCl\(_2\)
- **Bilirubin**

 1. the water soluble *conjugated* fraction gives a *direct reaction* to diazo reagent
 2. the lipid soluble, *indirect reacting* (total - direct), primarily *unconjugated* fraction
 - complicated as there is also an albumin-bound conjugated fraction
 3. plasma levels
 i. total < 20 mmol/l
 ii. direct < 7 mmol/l
 4. direct / *conjugated hyperbilirubinaemia* *actually mixed* direct + indirect
 - disorders which impair excretion after conjugation
 i. hepatocellular disease
 ii. intra & extra-hepatic cholestasis
 5. indirect / *unconjugated hyperbilirubinaemia*
 - rate of bilirubin production exceeds either the rate of uptake, or conjugation
 i. overproduction - haemolysis, ineffective erythropoiesis
 ii. liver disease - Gilbert's, Crigler-Najjar
 6. *bilirubinuria*
 - only occurs following *conjugation*
 - usually detectable by dip-stick prior to clinical onset of jaundice
 - otherwise not very useful
 7. *urobilinogen*
 - appears only after metabolism in the gut
 - therefore *absent* in total bile duct obstruction

- **Central Nervous System**

 a. early *frontal area* impairment (behaviour/motor/sensory) with *brainstem sparing*
 b. followed by varying degrees of coma, with brainstem dysfunction resulting in
 i. respiratory failure
 ii. vasomotor imbalance - vasodilatation, arrhythmias
 c. Wernicke-Korsakoff syndrome
 d. very high sensitivity to - sedatives, narcotics, general anaesthetics
 e. EEG - slowing of rhythm
 - low frequency theta rhythm
 - high amplitude delta waves (deep coma)
 f. *cerebral oedema* *often without* clinical or CT signs
 g. *delerium tremens* in acute withdrawal state → ↑ sympathetic outflow
 h. associated *thiamine deficiency* - neuropathy
 - cardiomyopathy, vasodilatation
Renal / Electrolytes

- renal failure - hypotension, haemorrhage
- sepsis
- hepatorenal syndrome

- 2° hyperaldosteronism - hypokalaemia
 * hyponatraemia cf. expected hypernatraemia

- hypomagnesaemia & hypophosphataemia

- respiratory alkalosis - central hyperventilation

- later metabolic alkalosis - renal, vomiting

- metabolic acidosis occurs late with hypoxia & hypoglycaemia

Respiratory System

- early → central hyperventilation
- late → central respiratory failure
- aspiration, infection
- intra-abdominal hypertension due to ascites
 - ↓ chest wall compliance
 - ↓ FRC / TV
- vasodilatation / ↓ HPV → ↑ shunt fraction

Cardiovascular System

- initially high cardiac output with peripheral vasodilatation
- central vasomotor depression * low HR, CO and SVR
- arrhythmias - hypo-K⁺, hypoxia
 - cerebral oedema

- acute ethanol ingestion → myocardial depression

- chronic ethanol ingestion → cardiomyopathy

Coagulation Disorders

- fall in production of coagulation factors
 - VII - shortest t½ ~
 - vit K dependent factors - II, VII, IX, X
 - low factor V implies liver impairment other than vit K lack
 - fibrinogen falls last * ↓ I → probably DIC

- DIC is usually secondary to sepsis, severe hypovolaemia and rarely to the liver failure
- **Gastrointestinal Tract**
 a. gastric *erosions* / ulceration ~ 50%
 b. bacterial breakdown of protein may produce *encephalopathy*
 c. enteric bacteria are a source of *septicaemia* ↑ translocation ↓ hepatic RES function
 d. spontaneous bacterial peritonitis

- **Prognosis**

<table>
<thead>
<tr>
<th>Class</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>total bilirubin</td>
<td>< 34 µmol/l</td>
<td>< 60 µmol/l</td>
<td>> 60 µmol/l</td>
</tr>
<tr>
<td>albumin</td>
<td>> 35 g/l</td>
<td>> 30 g/l</td>
<td>< 30 g/l</td>
</tr>
<tr>
<td>ascites</td>
<td>none</td>
<td>controlled</td>
<td>uncontrolled</td>
</tr>
<tr>
<td>nutrition</td>
<td>good</td>
<td>fair</td>
<td>poor</td>
</tr>
<tr>
<td>encephalopathy</td>
<td>absent</td>
<td>absent</td>
<td>present</td>
</tr>
<tr>
<td>surgical risk</td>
<td>5%</td>
<td>10%</td>
<td>50%</td>
</tr>
<tr>
<td>prothrombin time<sup>2</sup></td>
<td>+ 1 1-4 s</td>
<td>+ 2 4-6 s</td>
<td>+ 3 > 6 s</td>
</tr>
</tbody>
</table>

¹ Child *et al.* 1964 surgical cohort undergoing portasystemic shunting
² Pugh *et al.* 1973 increased risk for each group, according to prolongation of PT

- other factors which are important in *prognosis* include,
 1. mechanical ventilation - respiratory failure - tissue hypoxia (Bihari)
 2. high creatinine - renal failure, HUS
 3. coagulopathy
 4. biochemical derrangement - hypo/hyper-Na⁺
 5. sepsis - uncontrolled
Management Principles

1. remove cause where possible
2. prevent infection - superinfection of the patient
 - transmission to staff
3. prevent vasomotor instability
4. prevent respiratory failure
5. maintain **renal function** *central hypovolaemia / arterial underfilling*
6. minimise and treat **cerebral oedema**
7. prevent **hypoglycaemia**

Treatment Hepatic Encephalopathy

a. minimise protein load
 i. dietary protein restriction
 ii. avoid GIT bleeding
 iii. clear the gut
 - Neomycin / Lactulose
 → given orally lowers gut pH to inhibit gram (-)ve bacteria,
 favours the growth of **lactobacilli**,
 traps NH_3 in the gut, and cathartic
 - MgSO$_4$ enema
b. treat and prevent electrolyte disturbances
 i. Na$^+$, K$^+$, osmolality
 ii. pH, especially **alkalosis**
c. experimental
 i. alter amino-acid balance in favour of **branched-chain** amino-acids
 ii. infusion of neurotransmitter precursors (L-dopa)
 iii. charcoal haemoperfusion / haemofiltration
d. avoid narcotics, sedatives, etc.

Treatment Cerebral Oedema

a. regular neurological assessment
b. early institution of controlled ventilation to maximise P_{aO_2} & lower P_{aCO_2}
c. ICP monitoring
d. maintain MAP / CPP
e. fluid restriction and diuretics (mannitol)
f. high dose steroids of **no** benefit
Treatment Nutrition

a. low total protein with high ratio of branched-chain amino-acids
b. high glucose intake, no fats / intralipid
c. vitamin supplements
 - Vit K ~ 15-20 mg/day
 - thiamine ~ 200 mg/day
 - folate ~ 1-2 mg/day
 - Vit C ~ 500 mg/day

Treatment Liver

a. maintain adequate oxygen and blood supply
b. minimise complications
c. ? insulin/glucagon infusion to stimulate hepatic regeneration
d. charcoal haemoperfusion
e. ? liver transplant

Anaesthetic Agents

1. thiopentone
 - ↓ protein binding directly related to ↓ albumin (~ 50%)
 - ↑ free fraction, but ↓ intrinsic hepatic clearance → normal plasma clearance
 - ↑ V_dSS / ↑ terminal elimination half-life
 - induction doses generally may be reduced by 50-75%
 - increased doses may be required in acute intoxication due to cross-tolerance

2. volatile agents
 - most result in 20-30% ↓ liver blood flow
 - cirrhotic rats exposed to 3 hours of 1.8% halothane showed no ↓ function
 - may actually be preferred agents, due to respiratory elimination
 - probably should avoid halothane, but no absolute evidence

3. muscle relaxants
 - vecuronium (< 0.15 mg/kg) and atracurium (< 0.6 mg/kg) will not have a significantly prolonged duration of action
 - with larger doses atracurium offers some advantage, hydrolysis being independent of plasma pseudocholinesterase
 - plasma pseudocholinesterase levels are rarely reduced sufficiently to prolong the duration of action of suxamethonium

4. opioids & sedatives
 - ↑ sensitivity to all CNS depressants is seen in hepatic encephalopathy
Cholestatic Liver Disease

Def'n: reduction or cessation of flow of bile, either intrahepatic or extrahepatic

- **Intrahepatic Cholestasis**
 1. hepatitis with cholestatic picture - see previous list
 2. hypoxia / hypotension
 3. sepsis
 4. drugs - steroids, synthetic oestrogens, etc.
 5. increased bilirubin load

- **Extrahepatic Cholestasis**
 1. gallstones, acalculous cholecystitis
 2. ascending cholangitis
 3. stricture, post-ERCP
 4. tumour - bile duct, gallbladder, Ampula of Vater
 - intrahepatic, primary or secondary
 - head of pancreas

- **Complications**

 NB: proportional to the severity and duration of the hyperbilirubinaemia

 1. pruritis, nausea & vomiting
 2. ascending infection
 3. hepatocellular death with fibrosis, portal hypertension & cirrhosis
 4. fat malabsorption & diarrhoea * hypovitaminoses A, D, E, K
 5. coagulopathy - responsive to parenteral vitamin K
 6. cutaneous xanthomatosis
 7. acute oliguric renal failure
Perioperative Considerations

NB: 25% of jaundiced patients lacking obstruction have *hepatocellular* disease, every attempt should be made to delineate the aetiology prior to anaesthesia.

1. defend S_pO_2, MAP & blood volume
 i. maintain liver perfusion & oxygenation
 ii. maintain GFR - especially elderly & deeply jaundiced

2. pharmacology
 i. parenteral vitamin K 10 mg & FFP should be available
 ii. avoid agents reliant on biliary excretion
 iii. opioids may ↑ tone in the sphincter of Oddi, -: avoid pre-induction
 iv. avoid potential hepatotoxins

Postoperative Jaundice Aetiology

a. increased bilirubin load
 i. haemolysis
 ii. haematoma - reabsorption
 iii. transfusion - old cells, incompatibility, sepsis

b. hepatocellular dysfunction
 i. congenital
 - Gilbert's - *ligand* deficiency \rightarrow ↓ uptake
 ~ 7-10% of otherwise "normal" patients
 - Crigler-Najjar Type II - low *glucuronyl transferase* ↓ conjugation
 - Rotor & Dubin-Johnson - low biliary excretion \rightarrow ↓ excretion
 ii. acquired
 - postoperative intrahepatic cholestasis
 - circulatory failure - hypovolaemia, hypotension, hypoxia \rightarrow hepatic ischaemia
 - drug-induced hepatitis - halothane, methoxyflurane
 - steroids, anti-TB agents, phenothiazines, etc.
 - infective hepatitis
 - septicaemia
 - trauma

c. obstructive
 i. bile duct trauma, oedema, ligation
 ii. cholelithiasis, cholecystitis
 iii. cholangitis
 iv. pancreatitis
- **Intrahepatic Cholestasis**

 Def'n:
 - mild form ~ "benign postoperative intrahepatic cholestasis"
 - severe form ~ "ICU liver"

 NB: common after major, abdominal, or emergency surgery, especially if associated with **hypotension & hypoxia**

 - pathogenesis,
 1. sepsis
 2. liver ischaemia
 3. increased bilirubin load - haematoma, transfusion
 - ~ 10% of T_x RBC's in 24 hours
 4. post-CPB - usually day 2-3, benign
 5. reduced renal excretion

 - if sensitive markers are used, mild postoperative dysfunction occurs in ~ 50%
 - postoperative jaundice occurs in ≤ 20% of patients undergoing major surgery
 1. **hyperbilirubinaemia** ≥ 100 µmol/l
 - disproportionate to enzyme levels
 - common at 2-14th day
 2. moderate ↑ ALP ~ 3-10x - "obstructive jaundice" pattern (ie. biliary stasis)
 3. only mild ↑ AST

 - prolonged form also has severe **hypoalbuminaemia** → INR ≥ 1.4
 - associated reduction in protein synthesis, reduced AA clearance, & low redox potential
LIVER TRANSPLANTATION

- first performed 1963 but limited survival
- current 5 year survival in USA ~ 60%
- fulminant hepatic failure, onset of encephalopathy within 8 weeks in the absence of chronic liver disease, is increasingly an indication for transplantation
- survival with medical Rx ~ 20-30%, cf. following transplantation ~ 65%

Considerations Preoperative

1. malnutrition
2. coagulopathy
 - factor deficiency < 20% V → ↑ intraoperative haemorrhage
 - thrombocytopenia ∝ splenomegaly
 - splenectomy → ↑ portal vein thrombosis, ∴ not an option
 - ± ? relationship to transfusion requirements
3. immunosuppression - spontaneous bacterial peritonitis
4. respiratory insufficiency - ↑ shunt / ↓ compliance / central failure
 - infection, aspiration
5. cardiovascular insufficiency - ↓ effective blood volume despite ascites
6. renal failure * hepatorenal syndrome

Intraoperative

1. RSI
2. cerebral oedema - ↑ ICP ∝ ↑ permeability of BBB & toxins
 - steroids not effective
 - limit use of volatile agents, vasodilators
3. high risk of VAE ? avoid using N₂O
 - monitoring
4. prolonged procedure ~ 8 hrs
5. massive transfusion ~ 25 units average
 - IV access & fluid warmers
 - monitoring: CVP/PAP, IABP, CUD
 - citrate toxicity & ↓ Ca++ when anhepatic
6. electrolyte disturbances - ↓ Na⁺, ↓ K⁺, ↓ Mg²⁺
 * BSL usually OK
 - progressive metabolic acidosis
 ± NaHCO₃ ~ 50 mmol prior to unclamping
7. coagulopathy - INR, APTT, fibrinogen & platelets hourly
8. maintenance of renal perfusion
9. venovenous bypass - used by some institutions
 - ↓ CVS compromise, inotropes & blood loss
 - no difference in morbidity / mortality

10. unclamping
 - H⁺ & K⁺ load, plus cold fluid
 - highest risk of VAE
 - arrhythmias (↓ HR), ↑ PCWP, ↓ CO
 - risk of PTE

11. fibrinolysis
 - ↑↑ tissue plasminogen activator
 - treat with Amicar (EACA)
 - monitor with thromboelastography

- **Postoperative Considerations**

1. 1° graft non-function - small percentage, ? reperfusion injury
2. fluid requirements
3. transfusion - blood, FFP, platelets
4. hypothermia
5. renal failure - *cyclosporin* nephrotoxicity
 - ATN
6. electrolyte changes
 i. hyper- - Na⁺, osmolarity, glycaemia
 ii. hypo- - Mg²⁺, K⁺
 iii. uraemia
 iv. *metabolic alkalosis*
7. pulmonary - ARDS, pneumonia
8. CNS - seizures
 - IC haemorrhage
 - *cyclosporin* neurotoxicity
9. graft rejection / liver failure ~ 5-20%
Aetiology of Renal Dysfunction

- hypovolaemia, hypoperfusion
- inefficiency of venovenous bypass
- poor graft
- nephrotoxins - cyclosporin, aminoglycosides
- IVC obstruction
- intra-abdominal hypertension
- septicaemia

NB: RX → IV fluids, ? dopamine, reduce Cyclosporin dose

Transplant Rejection

- 1° graft rejection ~ 2%
 - rise in GGT, later ALP
 - fever, tachycardia
- 'preservation injury' - reversible centrilobular lesion
- vascular ∝ thrombosis - rise in AST & ALT first
- intrahepatic cholestasis - common, spontaneous remission
- biliary tract complications
- chronic rejection

NB: Acute rejection RX - pulse steroids
- monoclonal Ig OKT₃

Maintenance RX - azathioprine
- cyclosporin A, steroids
MORBID OBESITY

Def'n: body mass index > 35
$~ 22-28$ normal
> 42 MO in pregnancy

> 2x ideal body weight, or
> 45 kg over ideal body weight

Pathophysiology

1. BMR increased proportionally to body weight
2. cardiovascular
 i. \uparrow blood volume, plasma volume & cardiac output $\propto \uparrow$ weight
 ii. adipose BF ~ 2-3 ml/100g at rest \rightarrow \uparrow CO ~ 1.5 l/min / 50 kg
 iii. HR usually unchanged, $\therefore \uparrow$ CO $\propto \uparrow$ SV
 iv. \uparrow CO $\propto \uparrow$ VO$_2$ \rightarrow δCa-VO$_2$ normal
 v. later develop progressive hypertensive and ischaemic heart disease
 • progressive dilatation of LV, \downarrow exercise response & \uparrow LVEDP
 vi. reduced exercise tolerance
3. respiratory
 i. \uparrow VO$_2$ \rightarrow \uparrow CO$_2$ production
 ii. altered lung mechanics \propto loading of thoracic wall with fat
 • \downarrow FRC & ERV predominantly
 • encroachment of closing capacity on FRC
 • reduced chest wall compliance
 • increased work of breathing
 iii. increased V/Q mismatch \rightarrow increased δP$_{A-aO2}$ \pm hypoxia
 • the young obese usually have normal blood gases
 iv. tendency to hypercapnia with increased loads
 v. central CO/O$_2$ drive abnormalities \rightarrow
 • obesity hypoventilation syndrome \rightarrow central
 • obstructive sleep apnoea syndrome \rightarrow central & peripheral
4. endocrine
 i. higher than normal calorie intake
 ii. \uparrow incidence of glucose intolerance, NIDDM
 iii. \uparrow incidence of pancreatic dysfunction
5. gastrointestinal
 i. gastric stasis, reflux due to hiatal hernia \rightarrow increased aspiration risk
 ii. fasting $> 90\%$ have gastric volume > 0.4 ml/kg & pH < 2.5
 iii. fatty liver infiltration
 iv. hepatic dysfunction 2% intestinal bypass
6. general
i. intubation
 - decreased atlanto-axial movement
 - chin & upper thoracic fat pads
 - large tongue, palatal & pharyngeal fat pads

ii. technical problems
 - CVC insertion
 - IV access
 - epidural catheters, etc.
 * patient transfers

iii. reduced **immune response**

iv. skin infections
 - bacterial & fungal

v. psychology

vi. increased risk of
 - IHD
 - perioperative morbidity & mortality
 - infections

7. **pharmacokinetics/dynamics**
 i. \downarrow percentage body water & muscle mass / \uparrow percentage fat
 ii. **hepatic dysfunction** \propto fatty infiltration
 iii. high incidence of **cholelithiasis** & pancreatic disease
 iv. **hydrophilic drugs** - NMJ blockers
 - similar absolute volumes of distribution, clearance & elimination half-lives
 - vecuronium administered mg/kg has prolonged activity, suggesting relative overdose \rightarrow dose based on **lean body mass**
 - atracurium recovery similar to non-obese ? why
 v. **lipophilic drugs** - STP, BZD's
 - $\uparrow V_{ass}$, normal clearance & \uparrow elimination half-lives
 vi. fentanyl kinetics similar to non-obese
 - alfentanil/sufentanyl \rightarrow $t_{1/2}$
 vii. \uparrow plasma pseudocholinesterase activity \rightarrow ~ 1.5 mg/kg
Anaesthetic Management

1. **premedication**
 - H₂ blockers, metoclopramide, clear antacid
 - anticholinergics if fibreoptic intubation anticipated
 - sedatives only when the patient can be monitored

2. **monitoring**
 - ECG → II + V₅
 - IABP, NIBP difficult and increased inaccuracy
 - F₁O₂, S₉O₂, spirometry, ETCO₂, Temp., PNS

3. **airway maintenance**
 - always use an ETT, CP & RSI
 - mask SV → ↑ ETCO₂ & ↓ S₉O₂
 - ≤ 13% incidence of **difficult intubation**, → prepare!
 - awake fibreoptic if 75% > IBW
 - skilled assistance where possible

4. **general anaesthesia**
 - STP ≤ 7 mg/kg, but allowances for CVS dysfunction
 - ↑ % volatile agents presented to the liver for metabolism → **isoflurane**
 - supposition of prolonged recovery from volatile agent has been **disproved**
 - SV relatively contraindicated → hypercarbia, hypoxia
 - N₂O would appear logical due to low solubility, but ↓ s F₁O₂
 - ↓ FRC & ↑ VO₂ → rapid desaturation, → initial F₁O₂ = 1.0
 - extubation when fully reversed & awake

5. **regional anaesthesia**
 - SA & epidural dose requirements for MO patients are ~ 70-80% of normal
 - SA block to T₅ results in little change in ventilatory function
 - SA block > T₅ may produce significant desaturation/hypercarbia, accompanying autonomic blockade may result in CVS compromise
 - MO patient should receive supplemental O₂ and minimal sedation
 - monitoring should be the same cf. GA

6. **postoperative considerations**
 - ↑ incidence of complications with ↓ PH₅ of CVS or RS disease
 - thoracic or abdominal operations
 - ↑ incidence of DVT & **all** should have **heparin** prophylaxis ± leg stockings
 - hypoxaemia may persist ≤ 7 days following intra-abdominal surgery & is a universal finding → **all** should have **supplemental oxygen**
 - IM drug administration may be unreliable & unpredictable, → intravascular route should be used
 - PCA is preferable to IV infusions as lesser total dose
 - **epidural** administration is associated with a lower incidence of respiratory complications & ? faster recovery
 - postoperative analgesic doses (opioid + LA) are the same cf. normal patients
 - patients with a strong history of OSAS / OHS should be observed for the first 24-48 hours in a high dependency area
THE ELDERLY

Def’n: life expectancy, actuarial term describing the average number of years a member of a specific population may be expected to live, given environmental constraints.

life span, is the maximal attainable biological age ~ 110-115, being species specific and virtually unaltered throughout history.

specialised texts discriminate between elderly, aged and very old, however, for practical purposes elderly or geriatric ≥ 65 years,

aging, is a progressive, universally prevalent physiological process, producing measurable changes in structure and function of organ systems.

Physiological Changes with Aging

- **Body Composition**

1. body weight ↑’s to 60 years (M ~ 25% / F ~ 18%), then decreases
2. loss of skeletal muscle (lean body mass) → ↓ exercise VO₂ ~ 30-50% → ↓ basal VO₂
 - parallel reduction in resting CO
 - ↓ heat production and ability to compensate for heat loss
3. ↑ percentage body fat *↑F > ↑M*
 - ↑ body stores for lipid soluble agents
 - more gradual elimination & prolonged anaesthetic effect
4. plasma volume → ↓ 20-30% by 75 yrs (ASA: McLeskey)
 → unchanged in healthy (RDM: Muravchick)
 - most studies showing ↓ V₉₀ were in small numbers of hospitalised, ill patients
 - no change is seen in healthy, active elderly patients, however, those patients
 presenting for surgery may well have factors → ↓ V₉₀
5. 4 factors result in ↓ protein binding
 i. quantitative ↓ protein - mainly ↓ albumin
 ii. qualitative changes in circulating protein
 iii. effects of co-administered drugs
 iv. effects of concurrent disease states
 - however, ↓ protein binding has minimal clinical effect on the anaesthetic or adjuvant agents, except for pethedine
6. red cell mass, WCC, platelets & coagulation
 - change little in the absence of age-related disease
 - there may be some age-related increase in capillary fragility
7. osteoporosis and loss of skeletal mass
Hepatic Function & Metabolism

1. little qualitative change in hepatocellular enzyme function
2. significant ↓ plasma cholinesterase activity in elderly men (not women)
3. ↓ hepatic mass ~ 40% by age 80 years
 - parallel ↓ hepatic blood flow
4. ↓ hepatic metabolism of drugs, especially *high clearance / flow limited* agents
 - morphine, pethidine, fentanyl, naloxone
 - methohexital, ketamine, propofol, ? midazolam
 - lignocaine, β-receptor agonists / antagonists, TCA's
5. progressive *glucose intolerance* ↓ hepatic function ↓ lean tissue mass

Renal Function

1. ARF → ~ 20% of postoperative deaths in the elderly
2. ~ 30% of elderly surgical patients have pre-existing renal insufficiency
3. ↓ renal mass ~ 30% by age 80 years
 - selective loss of parenchyma, with fibrosis & infiltration
4. *glomerulosclerosis* results in effective shunting of RBF
 → both RPF & GFR decrease > expected by % loss of renal mass
5. total ↓ RBF ~ 10% / decade
 > ↓ GFR ≈ ↑ filtration fraction
6. serum *creatinine* usually "normal" ≈ ↓ muscle mass
7. ↓ response to ADH
8. ↓ T_{max} for glucose - plus drugs secreted by the proximal tubule (AB_X)
9. ↓ concentrating ability & Na⁺ conservation
10. ↑ susceptibility to *medullary ischaemia*
Central Nervous System

1. ↓ brain mass ~ 20% by age 80 years
 - loss accelerates > 60 years
 ~ 50,000 neurons/day (10 x 10^9 total)
2. loss is selective ~ 30-50% loss in cortex, thalamus & basal ganglia
3. parallel ↓ CBF ~ 20%, with regional flows maintained
4. autoregulation and vasomotor responses to CO₂ remain normal
5. generalised depletion of neurotransmitters, NA, DA, 5HT & tyrosine, plus ↑ activity of COMT & MAO & ↓ receptor "upregulation" in response
6. ? reduced receptor affinity for DA & NA

Peripheral & Autonomic Nervous Systems

1. progressive deafferentation with ↑ stimulation threshold for all modalities
2. concomitant deterioration of conduction pathways → ↓ v_c
3. motor end-plate proliferation & ↑ cholinergic receptors
 • however, actual number of end-plate units decreases
 • sensitivity to non-depolarising blockers does not alter significantly
4. adrenal mass → ↓ 15% by 80 years
5. plasma levels of catecholamines are 2-4x higher
 • both at rest and during exercise
 • marked reduction in end-organ responsiveness
6. receptor downregulation may be due to,
 i. ↓ numbers of end-organ receptors
 ii. ↓ affinity for catecholamines - both agonists & antagonists
 iii. ↓ G-protein coupling & adenylate cyclase activation
 iv. ? ↓ membrane fluidity
7. dysfunction of reflex autonomic homeostasis
 i. baroreceptor reflex → ↓ postural reflexes
 ii. vasoconstrictor response to cold
 iii. beat-to-beat HR variability
Analgesic & Anaesthetic Agents

1. Peripheral deafferentation, decreased receptor numbers, decreased central conduction and decreased CNS mass do not result in a clinically demonstrable increase in the pain threshold.
2. May have a small increased threshold for superficial discrete stimuli but reduced threshold for visceral pain, or that associated with injury / illness.
3. ↓ anaesthetic MAC ≤ 30%, regardless of molecular species.

Cardiovascular Function

1. ~ 50-65% of elderly patients have coexisting CVS disease.
 - This figure may be higher in surgical populations.
2. ↑ resting HR in fit elderly patients \(\propto \) ↓ parasympathetic tone.
 - This also results in - loss of HR variability with respiration
 - ↓ HR response to atropine, pancuronium & isoflurane
 - ↓ HR response to intubation (BP response normal)
 - ↓ HR in most debilitated & medicated patients.
3. LV becomes both preload & afterload dependent,
 i. ↑ ventricular wall thickness - fibrosis & amyloid infiltration
 - ↓ LV compliance
 ii. Valvular fibrocalcification & sclerosis
 iii. ↓ elasticity of large arteries & ↑ impedance to LV ejection
4. ↓ resting CI \(\propto \) ↓ muscle mass & VO\textsubscript{2}
5. ↓ maximal CI \(\propto \) ↑ activation/contraction & relaxation times
 - ↓ HR response \(\rightarrow \) ↑ LVEDV & SV to compensate
 - ↓ response to β-stimulation
6. ↑ fibrosis of conducting tissue
 - Increased incidence of conduction abnormalities.
Respiratory Function

1. progressive ↓ alveolar surface area
2. ↑ dead space - both anatomical & alveolar
3. ↓ elastic recoil ∝ ↓ elastin content / ↑ fibrous connective tissue
 - ↑ lung compliance but ↓ support for small airways with closure
 - non-uniform ↓ elastic tissue → ↑ spread of time constants
 ↑ V/Q mismatch
4. ↓ chest wall compliance due to thoracic cage calcification
 - although C_L increases, total respiratory compliance changes little
 - the ↑ FRC is only modest
 - however, ↑ RV → ↓ ERV & VC
 ↓ FEV₁/FVC & ↓ MBC, FEF₂₅₋₇₅
 ↑ work of breathing
5. ↑ closing capacity → CC ≥ FRC
6. ↑ ΔP_A-aO₂ ≤ 40 mmHg → P_aO₂ ~ 105 - Age/3 mmHg
7. ↓ CNS response to hypoxia / hypercapnia
8. ↑ frequency & duration of apnoeic periods during sleep
 - ↑ apnoeic periods seen with opioids ∝ higher peak plasma levels
Perioperative Outcome & Risk

Risk Factors

- for elderly patients ≥ 65 years, 30 day perioperative mortality ~ 5-10%
- consistent evidence elderly have higher morbidity / mortality cf. younger patients
- major risk factors for elderly patients,
 1. emergency surgery
 2. the operative site
 - major vascular, abdominal or thoracic ~ 10-20x ↑ mortality
 - cf. TURP, inguinal herniorrhaphy or cataract surgery
 3. physical status of the patient ≥ ASAIII
 4. *infection & sepsis* continue to be major causes of death

- *inadequate preparation* and cursory evaluation are commonplace in elderly patients, and are likely worse in emergency procedures

 NB: a review of emergency procedures in the elderly found a 65% incidence of *correctable* deficiencies in blood volume, electrolyte imbalance or O_2 transport

- in general, the greater the average age of the surgical population, the greater will be the incidence of *age-related disease*.

 i. hypertension ~ 46%
 ii. renal disease ~ 31%
 iii. atherosclerosis ~ 27%
 iv. previous MI ~ 18%
 v. CAL ~ 14%
 vi. cardiomegaly ~ 14%
 vii. diabetes ~ 9%
 viii. liver disease ~ 9%
 ix. CCF ~ 8%
 x. angina ~ 6%
 xi. CVA ~ 6%

 NB: seen in 1000 elderly patients presenting for surgery

- therefore, the widespread perception of increased mortality with advancing age actually reflects the relationship between preoperative status & operative outcome

 NB: recent studies actually show that the morbidity/mortality rates for fit, healthy octogenarians are *not significantly* higher than those for fit younger patients
Anaesthetic Management

- RDM states, that whatever the patients age, an uncomplicated anaesthetic depends upon,
 1. a technique compatible with the patients physical status and the type of surgery
 2. consistent monitoring
 3. attention to detail

NB: multiple retrospective & prospective studies have arrived at the same conclusion; *no significant difference* in outcome can be attributed solely or predominantly to the use of any specific agent, and no clear and objective benefit can be demonstrated for using *regional* rather than *general anaesthesia*.

?? incidence of PTE with orthopaedic procedures, RA versus GA

Important Issues

1. psychological preparation & premedication
2. transportation
3. **positioning** - fragile skin, bruising
 - bony protuberances
 - joint contractures/stiffening
4. IV access
5. pharmacokinetic/dynamic differences
6. intubation - cervical & TMJ stiffness, nuisance teeth, dentures
 * exaggerated pressor response & IHD/CVD
7. maintenance - absolute drug doses
 - CVS depression
 - tendency to mild hypovolaemia
 - hypoxaemia & ↑ F_{1}O₂ requirement
 - temperature regulation
CONNECTIVE TISSUE DISORDERS

Rheumatoid Arthritis

• prevalence ~ 1% with a F:M ratio ~ 3:1
• most common in the 4th & 5th decades
• moderate genetic predisposition ~ 30% monozygous twins
 ~ 5% dizygous twins
• multisystem disease of unknown aetiology
• characterised by a persistent inflammatory synovitis, usually symmetrical, with associated destruction of cartilage and bone, resulting in characteristic joint deformities

- Clinical Features

1. articular features
 • insidious onset with joint stiffness, pain and swelling - usually peripheral
 • swelling of proximal >> distal interphalangeal joints
 → ‘swan neck’ & ‘button hole’ deformities
 • may involve wrists, elbows, shoulders, knees, ankles and subtalar joints
 • cervical spine involvement is common
 i. atlanto-axial subluxation
 • anterior AAS ~ 80% and most common
 - transverse ligament destruction, worse in flexion
 • posterior AAS ~ 3-7%, due to odontoid peg destruction
 * extension may → anterior cord compression by atlas
 • vertical AAS ~ 10-20%, loss of lateral masses of C1
 - odontoid may sublux through foramen magnum
 - potentially life-threatening cervicomedullary pressure
 • lateral/rotatory AAS
 ii. subaxial subluxation
 • less common ~ 10-20% of RA population
 • direct laryngoscopy generally well tolerated

2. systemic features
 • ~ 10% have onset with acute polyarthritis, malaise, fever & weight loss
 • Raynaud's phenomenon
 • lymphadenopathy - especially draining active joints
 • osteoporosis
 • muscle weakness and wasting
 • tenosynovitis, bursitis, popliteal cysts
 • subcutaneous nodules ~ 20% over the disease course
3. **cardiovascular**
 - asymptomatic pericarditis or constrictive pericarditis
 - pericardial effusion, tamponade
 - nodular & granulomatous complications - heart block
 - AMI, coronary insufficiency
 - cardiomyopathy
 - AI
 - diffuse necrotising vasculitis - nodular seropositive disease
 - mononeuritis multiplex due to involvement of vasa nervorum (cf. PN)

4. **pulmonary**
 - pleurisy ± pleural effusion ~ 25%
 - chronic interstitial fibrosis
 - obliterative bronchiolitis
 - Caplan's syndrome, RA + 0.5 - 5.0 cm pulmonary nodules
 + pneumoconiosis (coal or other)

5. **neurological**
 - entrapment neuropathies - carpal tunnel
 - peripheral neuropathy - usually symmetrical & lower limbs
 - cervical *cord compression* - atlanto-axial or subaxial
 * common in long-standing RA
 > 4 mm odontoid-arch distance in flexion
 - nerve root compression, vertebrobasilar insufficiency, spinal artery occlusion

6. **haematological**
 - normochromic normocytic anaemia
 - low serum Fe**, low iron binding capacity, not responsive to oral iron
 - true iron deficiency 2° GIT haemorrhage from NSAID's
 - thrombocytosis with active disease
 - **Felty's syndrome** - splenomegaly, neutropenia & RA
 - seropositive, longstanding, but *inactive* disease
 - anaemia, thrombocytopenia, lymphadenopathy
 - weight loss, skin pigmentation & vasculitic changes

7. **ocular features**
 - episcleritis - benign but common in seropositive, usually painless
 - scleritis - inflammation of sclera & uveal tract, synechiae ± 2° glaucoma
 - scleromalacia & scleromalacia perforans
 - keratoconjunctivitis sicca ~ 10%
 - **Sjögren's syndrome** - keratoconjunctivitis sicca + xerostomia + CT disease
 - RA, SLE, PSS, polymyositis, myasthenia, etc.
 - multiple organ system Ab's

8. **amyloidosis**
 - ~ 25-50% of autopsies, making RA the leading cause
 - usually limited to *mild proteinuria*
 - rarely associated with nephrotic syndrome or renal failure
Ankylosing Spondylitis

- chronic inflammatory arthritis, affecting predominantly the SI joints and spine
- characterised by progressive stiffening and fusion of the axial skeleton
 1. typically young males, 2nd & 3rd decades
 2. M:F ratio ~ 9:1
 3. strong genetic disposition
 i. > 90% HLA-B27 positive
 ii. 1st degree relatives show an increased incidence of,
 - psoriatic arthritis
 - inflammatory bowel disease
 - Reiter's syndrome
 4. articular features
 - usually insidious onset, with recurring lower back pain & stiffness
 - worse in mornings and following inactivity
 - usually without associated nerve root signs
 - chest pain due to involvement of the costovertebral joints
 - plantar fasciitis, Achilles tendonitis
 - severe spinal fusion & rigidity occurs only in a minority, and in most is not associated with marked deformity
 - rarely develop kyphosis of the thoracic and cervical spine
 5. extra-articular features
 - non-granulomatous anterior uveitis
 - aortic regurgitation
 - cardiac conduction defects
 - apical pulmonary fibrosis
 - amyloidosis
 - osteoporosis & myelopathy, associated with atlanto-axial subluxation

Systemic Onset Juvenile Chronic Arthritis Still's Disease

- occurs in 20% of children with juvenile chronic arthritis
- lymphadenopathy, hepatosplenomegaly, pleurisy, pericarditis, macular rash & high fever
- myalgias, arthralgias and eventually polyarthritis, weight loss and growth retardation
- high ESR, anaemia of chronic disease, PMN leukocytosis, RF and ANF (-)'ve
- remission usually occurs within 6 months, 25% develop severe chronic polyarthritis
Systemic Lupus Erythematous

Def’n: multisystem CT disorder of unknown aetiology, characterised by,

i. multiple *autoantibodies*

ii. circulating *immune complexes*, and

iii. widespread immunologically mediated tissue destruction

- incidence ~ 10-15:100,000, with 90% being *female*, usually of childbearing years
- overall survival over 10 years ~ 70%

Antibodies

1. antinuclear ~ 95% - multiple nuclear & cytoplasmic Ag's
2. anti-DNA ~ 70%
3. antihistone ~ 70% - ↑ % in drug induced SLE
4. *anticardiolipin* ~ 50% - phospholipid Ag
 - ↑ risk of - arterial & venous thrombosis
 - spontaneous abortion
 - thrombocytopenia & lupus anticoagulant (↑ APTT)
 - false (+)ve VDRL
5. antieythrocyte ~ 60% - small % develop haemolysis
6. antiplatelet
7. antilymphocyte ~ 70% - leukopenia & ↓ T-cell function
8. antineuronal ~ 60% - CNS lupus

Aetiology

NB: multifactorial → genetic, environmental, and sex hormonal

1. *polyclonal B-cell* hyperactivity
2. disordered immunoregulation - ↓ T-cell suppressor function
 - ↑ idiotype / anti-idiotype Ab production
3. delayed clearance of circulating immune complexes
4. ↑ HLA-DR2 & DR3
5. suspected, but not proven *viral activation*
6. phospholipid from enteric bacterial cell walls acts as polyclonal B-cell activator
Clinical Features

1. **systemic**
 - fatigue, malaise, fever
 - anorexia, nausea, weight loss

2. **cutaneous**
 - malar "butterfly" rash - exacerbated by UV light
 - discoid rash
 - photosensitivity
 - other rashes - diffuse maculopapular rash
 - urticarial, bullous
 - alopecia - regrows except in discoid lupus
 - vasculitic skin lesions - subcutaneous nodules
 - ulceration (usually on the legs)
 - pupura
 - mucous membrane lesions - small painless ulcers

3. **musculoskeletal**
 - arthralgias & myalgias
 - seronegative polyarthritis
 - hand deformity & erosions - rare ± subcutaneous nodules
 - myopathy / myositis - inflammatory or 2° to therapy
 - ischaemic necrosis of bone - hip, knee & shoulder pain

4. **renal**
 - all have Ig-C₃ deposits in glomeruli
 - nephritis - persistent proteinuria > 500 mg/d
 - nephrotic syndrome
 - cylinduria, proteinuria and haematuria
 - most with mesangial or mild focal GN do not progress to CRF
 - in those with more active disease, CRF is a major cause of death
 - these tend not to respond to immunosuppression & require dialysis & transplantation

5. **nervous system**
 - any section may be involved - spinal cord, peripheral nerves
 - cortex, meninges
 - headache, depression & anxiety
 - organic brain syndrome - phychosis
 - seizures (grand mal, petit mal, or focal)
 - hypothalamic dysfunction, SIADH, pseudotumour cerebri
 - focal infarction, extrapyramidal or cerebellar dysfunction
 - optic neuritis, cranial nerve palsies
 - transverse myelitis - paraplegia, quadriplegia
 - mononeuritis multiplex
6. **haematological**
 - anaemia of chronic disease± haemolytic anaemia
 - leukopaenia, lymphopaenia
 - splenomegaly, lymphadenopathy
 - thrombocytopenia
 - **circulating anticoagulant** - phospholipid of prothrombin activator complex
 \[\rightarrow \uparrow \text{APTT} \& 3 \text{ clinical sequelae,} \]
 - i. venous or arterial **thromboses**
 - ii. **haemorrhagic** sequelae - especially if \(\downarrow \) platelets or \(\downarrow \) prothrombin
 - Ab's to factors VIII, IX
 - iii. benign laboratory minifestation

7. **cardiopulmonary**
 - pericarditis ± effusion
 - myocarditis
 - endocarditis - Libman-Sachs
 - pleurisy ± effusions
 - lupus pneumonitis
 - interstitial fibrosis
 - pulmonary hypertension
 - ARDS, pulmonary haemorrhage

8. **gastrointestinal**
 - nonspecific - anorexia, N&V, mild pain, diarrhoea
 - vasculitis - bleeding, vascular thrombosis, or perforation
 - ascites
 - abnormal liver function

9. **ocular**
 - retinal vasculitis
 - conjunctivitis, episcleritis
 - sicca syndrome

10. **obstetric**
 - normal fertility
 - **recurrent abortion** ~ 30-50%
 - \(\uparrow\uparrow \) disease activity - 1\(^{st}\) trimester & postpartum

Drug-Induced Lupus

1. **procainamide** ~ 50-75% \(\rightarrow \) ANA-Ab, 20% LE
2. **hydrallazine** ~ 25-30% \(\rightarrow \) ANA-Ab, 10% LE
3. others \(\rightarrow \) methyldopa, chlorpromazine, d-penicillamine, OCP, isoniazid, ethosuximide, practolol
Marfan’s Syndrome

Defn: defined upon the basis of characteristic changes in three connective tissue systems,

i. skeleton
ii. eyes
iii. cardiovascular system

1. autosomal dominant - variable expression
 ~ 15-30% may be due to new mutations
 * the system abnormalities can be inherited independently in some families

2. skeletal changes
 i. tall with long limbs
 ii. long slender fingers & toes - *arachnodactyly*
 iii. overgrowth of the ribs - pes excavatum, pes carinatum, asymmetry
 iv. scoliosis / kyphosis
 v. hypermobility of joints - most are mild
 - rarely similar to Ehler’s Danlos
 - very rarely stiff joint syndrome

3. cardiovascular changes
 i. mitral valve prolapse
 ii. aortic dilatation - from aortic root & progressive
 - dissection & rupture are common
 iii. high risk during pregnancy - up to 50% mortality in some series

4. ocular
 i. subluxation of the lens - *ectopia lentis*, usually upward
 ii. glaucoma - usually 2° lens dislocation or surgery
 iii. increased axial globe length - *myopia*
 - retinal detachment